Computer Vision API

從影像擷取豐富資訊,進而分類及處理視覺化資料,並對影像進行機器輔助審核,以協助籌備您的服務。

分析影像

這項功能會傳回在影像中找到的視覺化內容資訊。使用標籤、描述及網域特定模型,從容地識別內容並將其加上標籤。套用成人/猥瑣設定,進而啟用自動限制成人內容。識別圖片中的影像類型及色彩配置。

觀看影片


性別 Male
年齡 36
功能名稱:
說明 { "Tags": [ "water", "swimming", "sport", "pool", "person", "man", "frisbee", "ocean", "blue", "bird", "riding", "top", "standing", "wave", "young", "body", "large", "game", "glass", "pond", "playing", "board", "catch", "clear", "boat", "white" ], "Captions": [ { "Text": "a man swimming in a pool of water", "Confidence": 0.8909298 } ] }
標籤 [ { "Name": "water", "Confidence": 0.9997857 }, { "Name": "swimming", "Confidence": 0.955619633 }, { "Name": "sport", "Confidence": 0.953807831 }, { "Name": "pool", "Confidence": 0.9515978 }, { "Name": "person", "Confidence": 0.889862537 }, { "Name": "water sport", "Confidence": 0.664259 } ]
影像格式 "Jpeg"
影像尺寸 462 x 600
美工圖案類型 0
線條繪圖類型 0
黑與白 false
成人內容 false
成人分數 0.07518345
辛辣 false
辛辣分數 0.1814024
類別 [ { "Name": "people_swimming", "Score": 0.98046875 } ]
臉部 [ { "Age": 36, "Gender": "Male", "FaceRectangle": { "Top": 133, "Left": 298, "Width": 121, "Height": 121 } } ]
主要色彩背景
"White"
主要色彩前景
"Grey"
輔色
#19A4B2

想要建置這個嗎?

讀取影像中的文字

光學字元辨識 (OCR) 可偵測影像中的文字,並將辨識出的字詞擷取到電腦可讀取的字元資料流中。分析影像,進而偵測內嵌的文字、產生字元資料流並啟用搜尋。替文字照相,省下複製文字所需的時間及精力。

觀看影片


  1. 預覽
  2. JSON

IF WE DID

ALL

THE THINGS

WE ARE

CAPABLÉ•

OF DOING,

WE WOULD

LITERALLY

ASTOUND

QURSELV*S.

{
  "TextAngle": 0.0,
  "Orientation": "NotDetected",
  "Language": "en",
  "Regions": [
    {
      "BoundingBox": "316,47,284,340",
      "Lines": [
        {
          "BoundingBox": "319,47,182,24",
          "Words": [
            {
              "BoundingBox": "319,47,42,24",
              "Text": "IF"
            },
            {
              "BoundingBox": "375,47,44,24",
              "Text": "WE"
            },
            {
              "BoundingBox": "435,47,66,23",
              "Text": "DID"
            }
          ]
        },
        {
          "BoundingBox": "316,74,204,69",
          "Words": [
            {
              "BoundingBox": "316,74,204,69",
              "Text": "ALL"
            }
          ]
        },
        {
          "BoundingBox": "318,147,207,24",
          "Words": [
            {
              "BoundingBox": "318,147,63,24",
              "Text": "THE"
            },
            {
              "BoundingBox": "397,147,128,24",
              "Text": "THINGS"
            }
          ]
        },
        {
          "BoundingBox": "316,176,125,23",
          "Words": [
            {
              "BoundingBox": "316,176,44,23",
              "Text": "WE"
            },
            {
              "BoundingBox": "375,176,66,23",
              "Text": "ARE"
            }
          ]
        },
        {
          "BoundingBox": "319,194,281,44",
          "Words": [
            {
              "BoundingBox": "319,194,281,44",
              "Text": "CAPABLÉ•"
            }
          ]
        },
        {
          "BoundingBox": "318,243,181,29",
          "Words": [
            {
              "BoundingBox": "318,243,43,23",
              "Text": "OF"
            },
            {
              "BoundingBox": "376,243,123,29",
              "Text": "DOING,"
            }
          ]
        },
        {
          "BoundingBox": "316,271,170,24",
          "Words": [
            {
              "BoundingBox": "316,272,44,23",
              "Text": "WE"
            },
            {
              "BoundingBox": "375,271,111,24",
              "Text": "WOULD"
            }
          ]
        },
        {
          "BoundingBox": "317,300,200,24",
          "Words": [
            {
              "BoundingBox": "317,300,200,24",
              "Text": "LITERALLY"
            }
          ]
        },
        {
          "BoundingBox": "316,328,157,24",
          "Words": [
            {
              "BoundingBox": "316,328,157,24",
              "Text": "ASTOUND"
            }
          ]
        },
        {
          "BoundingBox": "318,357,214,30",
          "Words": [
            {
              "BoundingBox": "318,357,214,30",
              "Text": "QURSELV*S."
            }
          ]
        }
      ]
    }
  ]
}

上傳此示範的資料,即表示您同意 Microsoft 可儲存此資料並用來改進 Microsoft 服務,例如改進此 API。為了協助保護您的隱私權,我們採取了幾個步驟來取消識別您的資料並確保其安全。我們不會發佈您的資料或讓其他人使用此資料。

想要建置這個嗎?

預覽:讀取影像中的手寫文字

這項技術 (手寫 OCR) 可讓您偵測記事、信件、文章、白板、表格等的手寫文字並加以擷取,且可在不同的介面及背景中運作,例如技術白皮書、黃色自黏便箋及白板。

您可透過手寫文字辨識擷取文字的影像而無須謄寫,進而節省時間及心力並更具生產力。如此便可將筆記數位化,讓您實作快速輕易的搜尋,同時減少紙張堆疊量。

附註:這項技術目前為預覽狀態,且只適用於英文文字。

若要試用這項光學字元辨識示範,請上傳存在本機的影像或提供影像 URL。若未經您的允許,我們不會儲存您提供給這項示範的影像。

觀看影片