Mi az a mély tanulás?
A mély tanulás olyan gépi tanulás, amely mesterséges neurális hálózatokkal teszi lehetővé, hogy a digitális rendszerek tanuljanak és döntéseket hozzanak strukturálatlan, címkézetlen adatok alapján.
Általánosságban elmondható, hogy a gépi tanulás az AI-rendszereket tanítja be úgy, hogy azok tanulni tudjanak az adatokból szerzett tapasztalatokból, hogy fel tudják ismerni a mintákat, javaslatokat tegyenek és alkalmazkodjanak. A mély tanulásnak köszönhetően a digitális rendszerek nem csupán a szabályok alapján reagálnak, hanem példákból építik fel az ismereteket, majd ezeket az ismereteket használják fel az emberekéhez hasonló reagálásra, viselkedésre és teljesítményre.
Miért fontos a mély tanulás
Az adattudósok és a fejlesztők mély tanulási szoftverekkel tanítják be a számítógépeket nagy és összetett adathalmazok elemzésére, bonyolult és nemlineáris feladatok elvégzésére, valamint arra, hogy szövegekre, hangokra vagy képekre gyakran az embereknél is gyorsabban és pontosabban reagáljanak. Ezeket a képességeket sokféle gyakorlati helyzetben felhasználjuk, és számos modern innovációt tettek már eddig is lehetővé. A sofőr nélküli autók például mély tanulással dolgoznak fel képeket, és így különböztetik meg a járókelőket az úton lévő többi objektumtól, de így képesek az intelligens otthoni eszközök is értelmezni az emberi hangparancsokat.
A mély tanulás azért is fontos, mert az adatmennyiség és a számítási kapacitás növekedésével a kiskereskedelmi, egészségügyi, szállítási, gyártási, technológiai és egyéb szektorokban működő vállalatok a mély tanulásba fektetnek be az innováció elősegítése, új lehetőségek feltárása és a versenyképesség fenntartása érdekében.
Hogyan működik a mély tanulás
A mély tanulás több rétegben elhelyezett neurális hálózati architektúrákra, a felhőben vagy fürtökön üzembe helyezett nagy teljesítményű grafikai feldolgozóegységekre, valamint nagy mennyiségű megcímkézett adatokra támaszkodik ahhoz, hogy rendkívül nagy pontosságot érjen el a szövegek, a beszéd és a képek felismerésénél. Ez a rendkívüli hatékonyság segít a fejlesztőknek olyan digitális rendszereket létrehozni, amelyek megközelítik az emberi intelligenciát, és emellett az értékteremtés idejét is lerövidíthetik azzal, hogy a modell betanítása hetekről órákra csökken.
Egy önvezető autó modelljének betanításához például több ezer órányi videóra és több millió képre lehet szükség. Mély tanulás nélkül az ilyen szintű betanítás nem volna lehetséges nagy méretekben.
Mi az a mély tanulási keretrendszer?
Az összetett gépi tanulási modellek könnyebb megvalósítása érdekében a fejlesztők olyan mély tanulási keretrendszereket használnak, mint a TensorFlow vagy a PyTorch. Ezek a keretrendszerek leegyszerűsítik a neurális hálózatok betanítása során felhasználható adatok gyűjtésének folyamatát. Emellett ezekkel a keretrendszerekkel együtt használhatók a betanítás és a következtetési modellek felgyorsítására olyan gyorsítók is, mint az ONNX Runtime.
Mély tanulási modellek betanítása
A mély tanulási modellek betanítására különböző stratégiákat és módszereket lehet alkalmazni. Tekintsünk meg ezek közül néhányat.
Felügyelt tanulás
Felügyelt tanulás esetén az algoritmusok címkézett adatkészletekkel vannak betanítva. Ez azt jelenti, hogy amikor az algoritmus döntést hoz egy adott információról, az adatokban található címkékkel ellenőrizheti, hogy ez a döntés helyes-e. Felügyelt tanulás esetén a modell betanításához használt adatokat embereknek kell biztosítaniuk, akik felcímkézik az adatokat, mielőtt felhasználnák azt az algoritmus betanítására.
Felügyelet nélküli tanulás
A felügyelet nélküli tanulás során az algoritmusok olyan adatokkal vannak betanítva, amelyek nem tartalmaznak címkéket vagy információkat, amelyek alapján az algoritmus ellenőrizhetné a döntéseit. Ehelyett a rendszer a saját maga által felismert minták alapján rendezi és osztályozza az adatokat.
Megerősítő tanulás
Ha egy rendszer megerősítő tanulást használ, akkor próbálkozásos módszer használatával oldja meg a feladatokat, így egymás után hoz döntéseket, és képes nem egyértelmű környezetekben is elérni a kívánt eredményt. Megerősítő tanulás esetén az algoritmus nem adathalmazokat használ a döntésekhez, hanem olyan információkat, amelyeket a környezetből gyűjt össze.
Mély megerősítő tanulás
A mély tanulási és a megerősítő tanulási technikák kombinálásával egy mély megerősítő tanulásnak nevezett gépi tanulási típust hozhatunk létre. A mély megerősítő tanulás ugyanazt a próbálkozásos döntéshozatali és összetett célelérési módszert használja, mint a megerősítő tanulás, de emellett mély tanulási képességeket is felhasznál ahhoz, hogy nagy mennyiségű strukturálatlan adatot tudjon értelmezni.
Mire használható a mély tanulás?
A mély tanulást számos különféle iparágban alkalmazzák különböző célokra. Íme néhány gyakori példa arra, hogyan használják a mély tanulást:
Kép-, beszéd- és érzelemfelismerés
A mély tanulási szoftverekkel növelhetjük a kép-, beszéd- és érzelemfelismerés pontosságát, és lehetővé tehetjük a fényképeken való keresést, a személyes digitális asszisztensek és a sofőr nélküli járművek használatát, alkalmazhatjuk őket a közbiztonságban, a digitális biztonságban és más intelligens technológiákban is.
Személyre szabott élmények
A streamelési szolgáltatások, az online kereskedők és más vállalatok mély tanulási modellekkel automatizálják a termékekre, filmekre, zenékre vagy egyéb szolgáltatásokra vonatkozó javaslatokat, és így tökéletesítik az ügyfélélményt a korábbi vásárlások, a korábbi viselkedés és egyéb adatok alapján.
Csevegőrobotok
A modern vállalatok ma már mély tanulást használnak a szöveges vagy hangalapú online csevegőrobotokhoz, melyeket gyakori kérdésekhez, rutinszerű tranzakciókhoz, de főleg ügyfélszolgálathoz használnak fel. Ezek képesek a szolgáltatást nyújtó ügynökök feladatát elvégezni, és használatukkal az ügyfeleknek sem kell várakozniuk, mert automatizált és a kontextusnak megfelelő és hasznos válaszokat kapnak.
Személyes digitális asszisztensek
A hangalapú digitális asszisztensek mély tanulást használva értik meg a beszédet, adnak megfelelő választ a természetes nyelven megfogalmazott kérdésekre és parancsokra, és időnként akár okosan is reagálnak.
Önvezető járművek
A mesterséges intelligencia és a mély tanulás zászlóvivőinek tekinthetők az önvezető autók, amelyek mély tanulási algoritmusokkal dolgoznak fel egyszerre több adatcsatornát a másodperc törtrésze alatt, soha nem kell útbaigazítást kérniük, és az emberi sofőröknél jelentősen gyorsabban képesek reagálni a váratlan helyzetekre is.
Számos vállalkozás használ nyílt forráskódú gépi tanulási szoftvereket, hogy mély tanulási megoldásokat tegyen elérhetővé a szervezet számára.
Mik azok a neurális hálózatok?
A mesterséges neurális hálózat (angolul artificial neural network, rövidítve ANN) egy digitális architektúra, amely az emberi kognitív folyamatokat utánozza abban, hogy bonyolult mintázatokat modellez, előrejelzéseket hoz létre, és megfelelő módon reagál a külső ingerekre. A gépi tanulás sok típusához strukturált adatokra van szükség – ellentétben a neurális hálózatokkal, amelyek képesek a külvilág eseményeit feldolgozható adatokként értelmezni.
Amikor elolvasunk egy jelentést, megnézünk egy filmet, amikor autót vezetünk vagy épp egy virágot megszagolunk, az agy több milliárd neuronja dolgozza fel az információt apró elektromos jeleket használva. Minden neuron bemeneteket dolgoz fel, az eredményt pedig kimenetként átadja egy másik neuronnak további feldolgozásra, és mindennek az eredménye egy üzleti gondolat, egy nevetés, a fékre taposás vagy éppen egy jóleső érzés. A gépi tanulásban a rendszerek neurális hálózatok segítségével képesek gyakorlatilag ugyanígy értelmezni a helyzeteket és reagálni rájuk.
Az ANN-t úgy lehet elképzelni, mint egy digitális neuronokat tartalmazó agyat. Noha a legtöbb ANN csak kezdetleges imitációja a valós agynak, még így is képesek óriási mennyiségű nemlineáris adatot feldolgozni, és ezzel olyan összetett problémákat megoldani, amelyekhez egyébként emberi közreműködésre lenne szükség. A banki elemzők például ANN használatával hitelkérelmeket képesek feldolgozni, és előre tudják jelezni vele, hogy a kérelmező milyen valószínűséggel lesz fizetésképtelen.
Mire használhatók a neurális hálózatok
A gépi tanulásban a neurális hálózatokat összetett, ideiglenes bemenetek és kimenetek tanulására és modellezésére, ismeretlen kapcsolatokra vonatkozó dedukciókra, valamint adatelosztási korlátozások nélküli előrejelzésekre használják. A neurális hálózati modellek számos mély tanulási alkalmazás alapját jelentik – ilyen például a számítógépes látás és a természetes nyelvi feldolgozás és az olyan megoldások, amelyek segíthetnek a csalás elleni védelemben, az arcfelismerésben vagy az önvezető járművek működtetésében.
A legtöbb vállalkozás előrejelzéseket használ a megalapozott üzleti döntésekhez, az értékesítési stratégiákhoz, a pénzügyi szabályozásokhoz és az erőforrások felhasználásához. A hagyományos előrejelzés korlátai azonban gyakran megnehezítik az összetett, dinamikus folyamatok előrejelzését, hiszen ezeknél több és gyakran rejtett mögöttes tényező is szerepel, amilyen például a tőzsdei árfolyamok. A mély tanulási neurális hálózati modellek segítségével fel lehet tárni a nemlineáris kapcsolatokat, és modellezni lehet a rejtett tényezőket is, így a vállalkozások pontos előrejelzésekhez jutnak a legtöbb üzleti tevékenységhez.
Gyakori neurális hálózatok
Több tucat különböző típusú AI-alapú neurális hálózat (ANN) létezik, és mindegyik különböző mély tanulási helyzetnél alkalmazható. Mindig olyan ANN-t kell használni, amely megfelel a konkrét üzleti és technológiai követelményeknek. Az alábbiakban néhány gyakori példát mutatunk be AI-alapú neurális hálózatokra:
Konvolúciós neurális hálózat (CNN)
A fejlesztők CNN használatával segítik az AI-rendszereket abban, hogy a képeket digitális mátrixokká konvertálják. A CNN-t elsősorban képbesoroláshoz és objektumfelismeréshez használják, mert alkalmasak arcfelismerésre, témák észlelésére és hangulatelemzésre is.
Dekonvolúciós neurális hálózat (DNN)
Ha az összetett vagy nagy mennyiségű hálózati jelek elvesznek vagy más jelekkel kombinálódnak, a DNN segít megtalálni őket. A DNN-ek nagy felbontású képek és optikai adatfolyam-becslések feldolgozásánál hasznosak.
Generatív kontradiktórius hálózat (GAN)
A GAN használatával a mérnökök arra tanítják be a modelleket, hogy hogyan hozzanak létre olyan új információkat vagy anyagokat, amelyek a betanítási adatok bizonyos tulajdonságait imitálják. A GAN abban segíti a modelleket, hogy finom különbségeket is észlelni tudjanak az eredeti és a másolatok között, és ezzel élethűbb másolatokat tudjanak létrehozni. A GAN-ok használatosak többek között kiváló minőségű kép- és videógeneráláshoz, magas szintű arcfelismeréshez és szuperfelbontáshoz.
Visszacsatolt neurális hálózat (RNN)
Az RNN meghatározott késéssel ad meg adatokat a rejtett rétegeknek. A hálózati számítástechnika az aktuális állapotok előzményinformációit is feldolgozza, a nagyobb bemenetek pedig nem változtatják meg a modell méretét. Az RNN jól használható beszédfelismeréshez, magas szintű előrejelzésekhez, a robotikához és más bonyolult mély tanulási számítási feladatokhoz.
Transzformátorok
A transzformátorok célja, hogy szekvenciális bemeneti adatokat kezeljenek. Az adatokat azonban nem csak szekvenciális sorrendben képesek feldolgozni. Ehelyett a transzformátorok a figyelmet használják – ez egy olyan technika, amely lehetővé teszi, hogy a modellek különböző hatásszinteket rendeljenek a bemeneti adatok különböző elemeihez, és hogy azonosítsák a bemeneti sorozatban az egyes adatok kontextusát. Ez nagyobb párhuzamosítást tesz lehetővé, ami csökkentheti a modell betanítási idejét.
A gépi tanulás és a neurális hálózatok közötti különbségek
Noha a neurális hálózatok a gépi tanulás egy formájának tekinthetők, van néhány jelentős különbség a neurális hálózatok és a normál gépi tanulási modellek között.
Az egyik az, hogy a neurális hálózatok általában összetettebbek, és sokkal inkább képesek függetlenül is működni, mint a hagyományos gépi tanulási modellek. Egy neurális hálózat például képes saját maga is megállapítani, hogy az előrejelzései és eredményei pontosak-e, míg egy gépi tanulási modellhez emberi mérnökre van szükség ennek eldöntéséhez.
Emellett a neurális hálózatok úgy vannak felépítve, hogy saját maguk is képesek legyenek tanulni és intelligens döntéseket hozni. A gépi tanulási modellek azonban csak olyan döntéshozatalra képesek, amely arra alapul, amire már betanították a modellt.
A mély tanulás Azure-beli használatának alapjai
A képfelismerést neurális hálózatokkal támogathatja, vagy optimalizálhatja a neurális nyelvi feldolgozást gyors, egyszerű és pontos BERT NLP modellekkel. Ismerje meg, hogyan lehet bármilyen mély tanulási modelleket létrehozni, betanítani és üzembe helyezni az Azure Machine Learning használatával.
Ismerkedés az adatszakértők számára elérhető gépi tanulással
Megtanulhatja, hogyan hozhat létre gépi tanulási megoldásokat a felhő méreteiben az Azure-ban, és megismerheti az adatszakértőknek és a gépi tanulási mérnököknek kínált gépi tanulási eszközöket.