生產者物價指數 (PPI) 用於衡量一段時間內國內生產者就其生產所獲售價的平均變化情況。 PPI 中包含的價格,來自其產品和服務涵蓋的第一次商業交易。
生產者物價指數修訂系列指數可反應生產者淨生產的價格變動,其是以北美洲產業分類系統 (North American Industry Classification System, NAICS) 的歸類為依據。 此 PC 資料集與多種 NAICS 經濟時間數列相容,包括產能、生產情況、就業情況、薪資及收入等等。
PPI 包含美國經濟商品生產業中所有產業的生產 (礦業、製造業、農業、漁業和林業),和天然氣、電力、建築,以及與生產業所生產之商品相比具有競爭力的商品,例如廢棄物和廢料。 此外,從 2011 年 1 月 1 日起,PPI 計劃就涵蓋服務業總產值的四分之三,所選產業的發行資料包含下列產業:批發和零售貿易、運輸和倉儲、資訊、金融和保險、房地產經紀、出租和租賃、專業、科學和技術服務、行政管理、支援和廢棄物管理服務、醫療保健和社會救助、住宿。
https://download.bls.gov/pub/time.series/wp/wp.txt 讀我檔案 是包含此資料集詳細資訊的檔案,位於原始資料集位置。 如需其他資訊,請參閱常見問題集。
此資料集來自美國勞工統計局 (BLS) 所發佈的生產者物價指數資料。 如需此資料集相關的使用條款及條件,請參閱 Copyright Information (連結與著作權資訊) 及 Important Web Site Notices (重要網站聲明)。
儲存位置
此資料集儲存於美國東部 Azure 區域。 建議您在美國東部配置計算資源,以確保同質性。
相關資料集
- 美國消費者物價指數
- US Producer Price Index - Commodities (美國生產物價指數 - 商品)
通知
Microsoft 係依「現況」提供 Azure 開放資料集。 針對 貴用戶對資料集的使用,Microsoft 不提供任何明示或默示的擔保、保證或條件。 在 貴用戶當地法律允許的範圍內,針對因使用資料集而導致的任何直接性、衍生性、特殊性、間接性、附隨性或懲罰性損害或損失,Microsoft 概不承擔任何責任。
此資料集是根據 Microsoft 接收來源資料的原始條款所提供。 資料集可能包含源自 Microsoft 的資料。
Access
Available in | When to use |
---|---|
Azure Notebooks | Quickly explore the dataset with Jupyter notebooks hosted on Azure or your local machine. |
Azure Databricks | Use this when you need the scale of an Azure managed Spark cluster to process the dataset. |
Azure Synapse | Use this when you need the scale of an Azure managed Spark cluster to process the dataset. |
Preview
product_code | industry_code | series_id | year | period | value | footnote_codes | seasonal | series_title | industry_name | product_name |
---|---|---|---|---|---|---|---|---|---|---|
2123240 | 212324 | PCU2123242123240 | 1998 | M01 | 117 | nan | U | PPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjusted | Kaolin and ball clay mining | Kaolin and ball clay |
2123240 | 212324 | PCU2123242123240 | 1998 | M02 | 116.9 | nan | U | PPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjusted | Kaolin and ball clay mining | Kaolin and ball clay |
2123240 | 212324 | PCU2123242123240 | 1998 | M03 | 116.3 | nan | U | PPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjusted | Kaolin and ball clay mining | Kaolin and ball clay |
2123240 | 212324 | PCU2123242123240 | 1998 | M04 | 116 | nan | U | PPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjusted | Kaolin and ball clay mining | Kaolin and ball clay |
2123240 | 212324 | PCU2123242123240 | 1998 | M05 | 116.2 | nan | U | PPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjusted | Kaolin and ball clay mining | Kaolin and ball clay |
2123240 | 212324 | PCU2123242123240 | 1998 | M06 | 116.3 | nan | U | PPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjusted | Kaolin and ball clay mining | Kaolin and ball clay |
2123240 | 212324 | PCU2123242123240 | 1998 | M07 | 116.6 | nan | U | PPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjusted | Kaolin and ball clay mining | Kaolin and ball clay |
2123240 | 212324 | PCU2123242123240 | 1998 | M08 | 116.3 | nan | U | PPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjusted | Kaolin and ball clay mining | Kaolin and ball clay |
2123240 | 212324 | PCU2123242123240 | 1998 | M09 | 116.2 | nan | U | PPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjusted | Kaolin and ball clay mining | Kaolin and ball clay |
2123240 | 212324 | PCU2123242123240 | 1998 | M10 | 115.9 | nan | U | PPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjusted | Kaolin and ball clay mining | Kaolin and ball clay |
Name | Data type | Unique | Values (sample) | Description |
---|---|---|---|---|
footnote_codes | string | 3 | nan P |
識別資料數列的註腳。 大部分的值為 Null。 請參閱 https://download.bls.gov/pub/time.series/pc/pc.footnote。 |
industry_code | string | 1,064 | 221122 325412 |
NAICS 產業代碼。 請參閱 https://download.bls.gov/pub/time.series/pc/pc.industry 中的代碼及名稱。 |
industry_name | string | 842 | Electric power distribution Pharmaceutical preparation manufacturing |
對應於產業代碼的名稱。 請參閱 https://download.bls.gov/pub/time.series/pc/pc.industry 中的代碼及名稱。 |
period | string | 13 | M06 M07 |
識別觀測資料的週期。 如需完整清單,請參閱 https://download.bls.gov/pub/time.series/pc/pc.period 。 |
product_code | string | 4,822 | 335129 311514P |
識別資料觀測所參考的產品代碼。 請參閱 https://download.bls.gov/pub/time.series/pc/pc.product 中的產業代碼、產品代碼與產品名稱對應。 |
product_name | string | 3,313 | Primary products Secondary products |
資料觀測所參考的產品名稱。 請參閱 https://download.bls.gov/pub/time.series/pc/pc.product 中的產業代碼、產品代碼與產品名稱對應。 |
seasonal | string | 1 | U | 識別資料是否季節性調整的代碼。 S=季節性調整;U=未調整 |
series_id | string | 4,822 | PCU22121022121012 PCU221122221122439 |
識別特定序列的代碼。 時間序列是指在持續時間間隔內的較長一段時間中,所觀測到的一組資料。 如需代碼、名稱、起迄年份等數列的詳細資料,請參閱 https://download.bls.gov/pub/time.series/pc/pc.series 。 |
series_title | string | 4,588 | PPI industry data for Electric power distribution-East North Central, not seasonally adjusted PPI industry data for Electric power distribution-Pacific, not seasonally adjusted |
|
value | float | 7,658 | 100.0 100.4000015258789 |
商品的物價指數。 |
year | int | 22 | 2015 2017 |
識別觀測年份。 |
Azure Notebooks
# This is a package in preview.
from azureml.opendatasets import UsLaborPPIIndustry
labor = UsLaborPPIIndustry()
labor_df = labor.to_pandas_dataframe()
labor_df.info()
# Pip install packages
import os, sys
!{sys.executable} -m pip install azure-storage-blob
!{sys.executable} -m pip install pyarrow
!{sys.executable} -m pip install pandas
# Azure storage access info
azure_storage_account_name = "azureopendatastorage"
azure_storage_sas_token = r""
container_name = "laborstatisticscontainer"
folder_name = "ppi_industry/"
from azure.storage.blob import BlockBlobServicefrom azure.storage.blob import BlobServiceClient, BlobClient, ContainerClient
if azure_storage_account_name is None or azure_storage_sas_token is None:
raise Exception(
"Provide your specific name and key for your Azure Storage account--see the Prerequisites section earlier.")
print('Looking for the first parquet under the folder ' +
folder_name + ' in container "' + container_name + '"...')
container_url = f"https://{azure_storage_account_name}.blob.core.windows.net/"
blob_service_client = BlobServiceClient(
container_url, azure_storage_sas_token if azure_storage_sas_token else None)
container_client = blob_service_client.get_container_client(container_name)
blobs = container_client.list_blobs(folder_name)
sorted_blobs = sorted(list(blobs), key=lambda e: e.name, reverse=True)
targetBlobName = ''
for blob in sorted_blobs:
if blob.name.startswith(folder_name) and blob.name.endswith('.parquet'):
targetBlobName = blob.name
break
print('Target blob to download: ' + targetBlobName)
_, filename = os.path.split(targetBlobName)
blob_client = container_client.get_blob_client(targetBlobName)
with open(filename, 'wb') as local_file:
blob_client.download_blob().download_to_stream(local_file)
# Read the parquet file into Pandas data frame
import pandas as pd
print('Reading the parquet file into Pandas data frame')
df = pd.read_parquet(filename)
# you can add your filter at below
print('Loaded as a Pandas data frame: ')
df
Azure Databricks
# This is a package in preview.
from azureml.opendatasets import UsLaborPPIIndustry
labor = UsLaborPPIIndustry()
labor_df = labor.to_spark_dataframe()
display(labor_df.limit(5))
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "laborstatisticscontainer"
blob_relative_path = "ppi_industry/"
blob_sas_token = r""
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
blob_sas_token)
print('Remote blob path: ' + wasbs_path)
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))
Azure Synapse
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "laborstatisticscontainer"
blob_relative_path = "ppi_industry/"
blob_sas_token = r""
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
blob_sas_token)
print('Remote blob path: ' + wasbs_path)
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))