The Azure Quickstart templates are currently available in English

Create Tabular Dataset from Relative Path in Datastore

Achal Jain 提供
上次更新日期: 2020/7/12

This template creates a tabular dataset from relative path in datastore in Azure Machine Learning workspace.

此 Azure Resource Manager (ARM) 範本是由社群成員 (而非 Microsoft) 建立。每個 ARM 範本都是由其擁有者 (而非 Microsoft) 依據授權合約授權給您。Microsoft 並不負責社群成員所提供和授權的 ARM 範本,而不會為了安全性、相容性或效能進行篩選。社群 ARM 範本並未依據任何 Microsoft 支援方案或服務提供支援,而且會在沒有任何擔保的情況下依現況提供。

參數

參數名稱 說明
workspaceName Specifies the name of the Azure Machine Learning workspace which will hold this datastore target.
datasetName The name of the dataset.
datasetDescription Optional : The description for the dataset.
datastoreName The datastore name.
relativePath Path within the datastore
sourceType Data source type
separator Optional: The separator used to split columns for 'delimited_files' sourceType, default to ',' for 'delimited_files'
header Optional : Header type. Defaults to 'all_files_have_same_headers'
partitionFormat Optional : The partition information of each path will be extracted into columns based on the specified format. Format part '{column_name}' creates string column, and '{column_name:yyyy/MM/dd/HH/mm/ss}' creates datetime column, where 'yyyy', 'MM', 'dd', 'HH', 'mm' and 'ss' are used to extract year, month, day, hour, minute and second for the datetime type. The format should start from the position of first partition key until the end of file path. For example, given the path '../USA/2019/01/01/data.parquet' where the partition is by country/region and time, partition_format='/{CountryOrRegion}/{PartitionDate:yyyy/MM/dd}/data.csv' creates a string column'CountryOrRegion' with the value 'USA' and a datetime column 'PartitionDate' with the value '2019-01-01
fineGrainTimestamp Optional : Column name to be used as FineGrainTimestamp
coarseGrainTimestamp Optional : Column name to be used as CoarseGrainTimestamp. Can only be used if 'fineGrainTimestamp' is specified and cannot be same as 'fineGrainTimestamp'.
tags Optional : Provide JSON object with 'key,value' pairs to add as tags on dataset. Example- {"sampleTag1": "tagValue1", "sampleTag2": "tagValue2"}
skipValidation Optional : Skip validation that ensures data can be loaded from the dataset before registration.
includePath Optional : Boolean to keep path information as column in the dataset. Defaults to False. This is useful when reading multiple files, and want to know which file a particular record originated from, or to keep useful information in file path.
location The location of the Azure Machine Learning Workspace.

使用範本

PowerShell

New-AzResourceGroup -Name <resource-group-name> -Location <resource-group-location> #use this command when you need to create a new resource group for your deployment
New-AzResourceGroupDeployment -ResourceGroupName <resource-group-name> -TemplateUri https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/101-machine-learning-dataset-create-tabular-from-relative-path/azuredeploy.json
安裝和設定 Azure PowerShell

命令列

az group create --name <resource-group-name> --location <resource-group-location> #use this command when you need to create a new resource group for your deployment
az group deployment create --resource-group <my-resource-group> --template-uri https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/101-machine-learning-dataset-create-tabular-from-relative-path/azuredeploy.json
安裝和設定 Azure 跨平台命令列介面