跳过导航

US Producer Price Index - Commodities

labor statistics ppi commodity

生产价格指数 (PPI) 是国内生产者产品出售价格随时间变化平均值的测量值。 PPI 中包含的价格来自相关产品和服务的首次商业交易。

每个月发布约 10,000 个针对单个产品和产品组的 PPI。 PPI 适用于美国经济中产品生产部门的近乎所有行业的产出,包括采矿业、制造业、农业、渔业和林业,以及天然气、电力、建筑和可与生产部门相竞争的产品行业,例如废物和废料处理行业。 以 2007 年经济普查中报告的收入衡量,PPI 计划覆盖了约 72% 的服务业产出。 数据涉及以下部门中的行业:批发和零售贸易;运输和仓储;信息;金融和保险;房地产中介、租赁和出租;专业、科学和技术服务;行政、支持和废物管理服务;医疗保健和社会援助;以及住宿。

原始数据集位置提供了自述文件 ,其中包含介绍此数据集详细信息的文件。 常见问题解答中提供了其他信息。

此数据集来源于美国劳工统计局 (BLS) 发布的生产者价格指数数据。 要了解与使用此数据集相关的条款和条件,请查看链接与版权信息以及重要网站声明

存储位置

此数据集存储在美国东部 Azure 区域。 建议将计算资源分配到美国东部地区,以实现相关性。

相关数据集

通知

Microsoft 以“原样”为基础提供 AZURE 开放数据集。 Microsoft 对数据集的使用不提供任何担保(明示或暗示)、保证或条件。 在当地法律允许的范围内,Microsoft 对使用数据集而导致的任何损害或损失不承担任何责任,包括直接、必然、特殊、间接、偶发或惩罚。

此数据集是根据 Microsoft 接收源数据的原始条款提供的。 数据集可能包含来自 Microsoft 的数据。

Access

Available inWhen to use
Azure Notebooks

Quickly explore the dataset with Jupyter notebooks hosted on Azure or your local machine.

Azure Databricks

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Azure Synapse

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Preview

item_code group_code series_id year period value footnote_codes seasonal series_title group_name item_name
120922 05 WPU05120922 2008 M06 100 nan U PPI Commodity data for Fuels and related products and power-Prepared bituminous coal underground mine, mechanically crushed/screened/sized only, not seasonally adjusted Fuels and related products and power Prepared bituminous coal underground mine, mechanically crushed/screened/sized only
120922 05 WPU05120922 2008 M07 104.6 nan U PPI Commodity data for Fuels and related products and power-Prepared bituminous coal underground mine, mechanically crushed/screened/sized only, not seasonally adjusted Fuels and related products and power Prepared bituminous coal underground mine, mechanically crushed/screened/sized only
120922 05 WPU05120922 2008 M08 104.4 nan U PPI Commodity data for Fuels and related products and power-Prepared bituminous coal underground mine, mechanically crushed/screened/sized only, not seasonally adjusted Fuels and related products and power Prepared bituminous coal underground mine, mechanically crushed/screened/sized only
120922 05 WPU05120922 2008 M09 98.3 nan U PPI Commodity data for Fuels and related products and power-Prepared bituminous coal underground mine, mechanically crushed/screened/sized only, not seasonally adjusted Fuels and related products and power Prepared bituminous coal underground mine, mechanically crushed/screened/sized only
120922 05 WPU05120922 2008 M10 101.5 nan U PPI Commodity data for Fuels and related products and power-Prepared bituminous coal underground mine, mechanically crushed/screened/sized only, not seasonally adjusted Fuels and related products and power Prepared bituminous coal underground mine, mechanically crushed/screened/sized only
120922 05 WPU05120922 2008 M11 95.2 nan U PPI Commodity data for Fuels and related products and power-Prepared bituminous coal underground mine, mechanically crushed/screened/sized only, not seasonally adjusted Fuels and related products and power Prepared bituminous coal underground mine, mechanically crushed/screened/sized only
120922 05 WPU05120922 2008 M12 96.7 nan U PPI Commodity data for Fuels and related products and power-Prepared bituminous coal underground mine, mechanically crushed/screened/sized only, not seasonally adjusted Fuels and related products and power Prepared bituminous coal underground mine, mechanically crushed/screened/sized only
120922 05 WPU05120922 2009 M01 104.2 nan U PPI Commodity data for Fuels and related products and power-Prepared bituminous coal underground mine, mechanically crushed/screened/sized only, not seasonally adjusted Fuels and related products and power Prepared bituminous coal underground mine, mechanically crushed/screened/sized only
120922 05 WPU05120922 2009 M02 113.2 nan U PPI Commodity data for Fuels and related products and power-Prepared bituminous coal underground mine, mechanically crushed/screened/sized only, not seasonally adjusted Fuels and related products and power Prepared bituminous coal underground mine, mechanically crushed/screened/sized only
120922 05 WPU05120922 2009 M03 121 nan U PPI Commodity data for Fuels and related products and power-Prepared bituminous coal underground mine, mechanically crushed/screened/sized only, not seasonally adjusted Fuels and related products and power Prepared bituminous coal underground mine, mechanically crushed/screened/sized only
Name Data type Unique Values (sample) Description
footnote_codes string 3 nan
P

标识数据系列的脚注。 大多数值都为 Null。 请参阅 https://download.bls.gov/pub/time.series/wp/wp.footnote。

group_code string 56 02
01

标识指数涵盖的主要商品组的代码。 有关组代码和名称,请参阅 https://download.bls.gov/pub/time.series/wp/wp.group 。

group_name string 56 Processed foods and feeds
Farm products

指数涵盖的主要商品组的名称。 有关组代码和名称,请参阅 https://download.bls.gov/pub/time.series/wp/wp.group 。

item_code string 2,949 1
11

确定数据观测相关的项目。 有关项目代码和名称,请参阅 https://download.bls.gov/pub/time.series/wp/wp.item 。

item_name string 3,410 Warehousing, storage, and related services
Security guard services

商品全称。 有关项目代码和名称,请参阅 https://download.bls.gov/pub/time.series/wp/wp.item 。

period string 13 M06
M07

标识观测数据的周期。 有关周期值列表,请参阅 https://download.bls.gov/pub/time.series/wp/wp.period 。

seasonal string 2 U
S

标识数据是否经过季节性调整的代码。 S = 季节性调整;U = 未经调整

series_id string 5,458 WPU131
WPU591

标识特定系列的代码。 时序是指在一致的时间间隔内在较长时间内观察到的一组数据。 有关时序详细信息(如代码、名称、开始年份和结束年份等),请参阅 https://download.bls.gov/pub/time.series/wp/wp.series 。

series_title string 4,379 PPI Commodity data for Mining services, not seasonally adjusted
PPI Commodity data for Metal treatment services, not seasonally adjusted

特定系列的标题。 时序是指在一致的时间间隔内在较长时间内观察到的一组数据。 有关时序详细信息(如 ID、名称、开始年份和结束年份等),请参阅 https://download.bls.gov/pub/time.series/wp/wp.series 。

value float 6,788 100.0
99.0999984741211

商品的价格指数。

year int 26 2018
2017

标识观测年份。

Select your preferred service:

Azure Notebooks

Azure Databricks

Azure Synapse

Azure Notebooks

Package: Language: Python Python
In [1]:
# This is a package in preview.
from azureml.opendatasets import UsLaborPPICommodity

labor = UsLaborPPICommodity()
labor_df = labor.to_pandas_dataframe()
ActivityStarted, to_pandas_dataframe
ActivityStarted, to_pandas_dataframe_in_worker
Looking for parquet files...
Reading them into Pandas dataframe...
Reading ppi_commodity/part-00000-tid-160579496407747812-077bf440-b39a-4520-9373-0a3f021dd59e-5654-1-c000.snappy.parquet under container laborstatisticscontainer
Done.
ActivityCompleted: Activity=to_pandas_dataframe_in_worker, HowEnded=Success, Duration=20409.23 [ms]
ActivityCompleted: Activity=to_pandas_dataframe, HowEnded=Success, Duration=20434.79 [ms]
In [2]:
labor_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6825676 entries, 0 to 6825675
Data columns (total 11 columns):
item_code         object
group_code        object
series_id         object
year              int32
period            object
value             float32
footnote_codes    object
seasonal          object
series_title      object
group_name        object
item_name         object
dtypes: float32(1), int32(1), object(9)
memory usage: 520.8+ MB
In [1]:
# Pip install packages
import os, sys

!{sys.executable} -m pip install azure-storage-blob
!{sys.executable} -m pip install pyarrow
!{sys.executable} -m pip install pandas
In [2]:
# Azure storage access info
azure_storage_account_name = "azureopendatastorage"
azure_storage_sas_token = r""
container_name = "laborstatisticscontainer"
folder_name = "ppi_commodity/"
In [3]:
from azure.storage.blob import BlockBlobServicefrom azure.storage.blob import BlobServiceClient, BlobClient, ContainerClient

if azure_storage_account_name is None or azure_storage_sas_token is None:
    raise Exception(
        "Provide your specific name and key for your Azure Storage account--see the Prerequisites section earlier.")

print('Looking for the first parquet under the folder ' +
      folder_name + ' in container "' + container_name + '"...')
container_url = f"https://{azure_storage_account_name}.blob.core.windows.net/"
blob_service_client = BlobServiceClient(
    container_url, azure_storage_sas_token if azure_storage_sas_token else None)

container_client = blob_service_client.get_container_client(container_name)
blobs = container_client.list_blobs(folder_name)
sorted_blobs = sorted(list(blobs), key=lambda e: e.name, reverse=True)
targetBlobName = ''
for blob in sorted_blobs:
    if blob.name.startswith(folder_name) and blob.name.endswith('.parquet'):
        targetBlobName = blob.name
        break

print('Target blob to download: ' + targetBlobName)
_, filename = os.path.split(targetBlobName)
blob_client = container_client.get_blob_client(targetBlobName)
with open(filename, 'wb') as local_file:
    blob_client.download_blob().download_to_stream(local_file)
In [4]:
# Read the parquet file into Pandas data frame
import pandas as pd

print('Reading the parquet file into Pandas data frame')
df = pd.read_parquet(filename)
In [5]:
# you can add your filter at below
print('Loaded as a Pandas data frame: ')
df
In [6]:
 

Azure Databricks

Package: Language: Python Python
In [1]:
# This is a package in preview.
from azureml.opendatasets import UsLaborPPICommodity

labor = UsLaborPPICommodity()
labor_df = labor.to_spark_dataframe()
ActivityStarted, to_spark_dataframe ActivityStarted, to_spark_dataframe_in_worker ActivityCompleted: Activity=to_spark_dataframe_in_worker, HowEnded=Success, Duration=2871.21 [ms] ActivityCompleted: Activity=to_spark_dataframe, HowEnded=Success, Duration=2875.06 [ms]
In [2]:
display(labor_df.limit(5))
item_codegroup_codeseries_idyearperiodvaluefootnote_codesseasonalseries_titlegroup_nameitem_name
12092205WPU05120922 2008M06100.0nanUPPI Commodity data for Fuels and related products and power-Prepared bituminous coal underground mine, mechanically crushed/screened/sized only, not seasonally adjustedFuels and related products and powerPrepared bituminous coal underground mine, mechanically crushed/screened/sized only
12092205WPU05120922 2008M07104.6nanUPPI Commodity data for Fuels and related products and power-Prepared bituminous coal underground mine, mechanically crushed/screened/sized only, not seasonally adjustedFuels and related products and powerPrepared bituminous coal underground mine, mechanically crushed/screened/sized only
12092205WPU05120922 2008M08104.4nanUPPI Commodity data for Fuels and related products and power-Prepared bituminous coal underground mine, mechanically crushed/screened/sized only, not seasonally adjustedFuels and related products and powerPrepared bituminous coal underground mine, mechanically crushed/screened/sized only
12092205WPU05120922 2008M0998.3nanUPPI Commodity data for Fuels and related products and power-Prepared bituminous coal underground mine, mechanically crushed/screened/sized only, not seasonally adjustedFuels and related products and powerPrepared bituminous coal underground mine, mechanically crushed/screened/sized only
12092205WPU05120922 2008M10101.5nanUPPI Commodity data for Fuels and related products and power-Prepared bituminous coal underground mine, mechanically crushed/screened/sized only, not seasonally adjustedFuels and related products and powerPrepared bituminous coal underground mine, mechanically crushed/screened/sized only
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "laborstatisticscontainer"
blob_relative_path = "ppi_commodity/"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))

Azure Synapse

Package: Language: Python
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "laborstatisticscontainer"
blob_relative_path = "ppi_commodity/"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))