美国劳动力统计信息 劳动力、劳动力参与率,以及按年龄、性别、种族和人种划分的非机构平民人口 。
此数据集来源于美国劳工统计局 (BLS) 发布的当前就业统计数据 - CES(国家)数据。 要了解与使用此数据集相关的条款和条件,请查看链接与版权信息以及重要网站声明。
存储位置
此数据集存储在美国东部 Azure 区域。 建议将计算资源分配到美国东部地区,以实现相关性。
相关数据集
通知
Microsoft 以“原样”为基础提供 AZURE 开放数据集。 Microsoft 对数据集的使用不提供任何担保(明示或暗示)、保证或条件。 在当地法律允许的范围内,Microsoft 对使用数据集而导致的任何损害或损失不承担任何责任,包括直接、必然、特殊、间接、偶发或惩罚。
此数据集是根据 Microsoft 接收源数据的原始条款提供的。 数据集可能包含来自 Microsoft 的数据。
Access
Available in | When to use |
---|---|
Azure Notebooks | Quickly explore the dataset with Jupyter notebooks hosted on Azure or your local machine. |
Azure Databricks | Use this when you need the scale of an Azure managed Spark cluster to process the dataset. |
Azure Synapse | Use this when you need the scale of an Azure managed Spark cluster to process the dataset. |
Preview
series_id | year | period | value | footnote_codes | lfst_code | periodicity_code | series_title | absn_code | activity_code | ages_code | cert_code | class_code | duration_code | education_code | entr_code | expr_code | hheader_code | hour_code | indy_code | jdes_code | look_code | mari_code | mjhs_code | occupation_code | orig_code | pcts_code | race_code | rjnw_code | rnlf_code | rwns_code | seek_code | sexs_code | tdat_code | vets_code | wkst_code | born_code | chld_code | disa_code | seasonal |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LNS11000031Q | 1972 | Q01 | 4300 | nan | 10 | Q | (Seas) Civilian Labor Force Level - 20 yrs. & over, Black or African American Men | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | S |
LNS11000031Q | 1972 | Q02 | 4370 | nan | 10 | Q | (Seas) Civilian Labor Force Level - 20 yrs. & over, Black or African American Men | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | S |
LNS11000031Q | 1972 | Q03 | 4397 | nan | 10 | Q | (Seas) Civilian Labor Force Level - 20 yrs. & over, Black or African American Men | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | S |
LNS11000031Q | 1972 | Q04 | 4381 | nan | 10 | Q | (Seas) Civilian Labor Force Level - 20 yrs. & over, Black or African American Men | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | S |
LNS11000031Q | 1973 | Q01 | 4408 | nan | 10 | Q | (Seas) Civilian Labor Force Level - 20 yrs. & over, Black or African American Men | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | S |
LNS11000031Q | 1973 | Q02 | 4445 | nan | 10 | Q | (Seas) Civilian Labor Force Level - 20 yrs. & over, Black or African American Men | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | S |
LNS11000031Q | 1973 | Q03 | 4477 | nan | 10 | Q | (Seas) Civilian Labor Force Level - 20 yrs. & over, Black or African American Men | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | S |
LNS11000031Q | 1973 | Q04 | 4523 | nan | 10 | Q | (Seas) Civilian Labor Force Level - 20 yrs. & over, Black or African American Men | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | S |
LNS11000031Q | 1974 | Q01 | 4574 | nan | 10 | Q | (Seas) Civilian Labor Force Level - 20 yrs. & over, Black or African American Men | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | S |
LNS11000031Q | 1974 | Q02 | 4538 | nan | 10 | Q | (Seas) Civilian Labor Force Level - 20 yrs. & over, Black or African American Men | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | S |
Name | Data type | Unique | Values (sample) | Description |
---|---|---|---|---|
absn_code | int | 4 | 3 4 |
|
activity_code | int | 7 | 8 3 |
|
ages_code | int | 35 | 10 17 |
|
born_code | int | 3 | 2 1 |
|
cert_code | int | 5 | 4 2 |
|
chld_code | int | 6 | 5 2 |
|
class_code | int | 14 | 2 1 |
|
disa_code | int | 3 | 2 1 |
|
duration_code | int | 11 | 18 6 |
|
education_code | int | 9 | 40 19 |
|
entr_code | int | 3 | 1 2 |
|
expr_code | int | 3 | 1 2 |
|
footnote_codes | string | 7 | nan 4.0 |
|
hheader_code | int | 2 | 1 | |
hour_code | int | 13 | 1 16 |
|
indy_code | int | 323 | 368 169 |
|
jdes_code | int | 3 | 1 2 |
|
lfst_code | int | 33 | 20 30 |
|
look_code | int | 7 | 1 6 |
|
mari_code | int | 5 | 2 1 |
|
mjhs_code | int | 6 | 1 2 |
|
occupation_code | int | 566 | 4999 8999 |
|
orig_code | int | 14 | 1 2 |
|
pcts_code | int | 23 | 5 8 |
|
period | string | 18 | M07 M06 |
|
periodicity_code | string | 3 | M Q |
|
race_code | int | 14 | 1 3 |
|
rjnw_code | int | 9 | 1 3 |
|
rnlf_code | int | 11 | 64 63 |
|
rwns_code | int | 17 | 10 1 |
|
seasonal | string | 2 | U S |
|
seek_code | int | 2 | 1 | |
series_id | string | 45,478 | LNU02000000 LNU01300000 |
|
series_title | string | 34,264 | (Unadj) Employment Level - Agriculture and Related Industries (Unadj) Civilian Labor Force Level |
|
sexs_code | int | 3 | 1 2 |
|
tdat_code | int | 6 | 1 4 |
|
value | float | 121,742 | 3.0 4.0 |
|
vets_code | int | 8 | 25 1 |
|
wkst_code | int | 7 | 1 4 |
|
year | int | 80 | 2018 2017 |
Azure Notebooks
Package:
Language:
Python
Python
In [1]:
# This is a package in preview.
from azureml.opendatasets import UsLaborLFS
labor = UsLaborLFS()
labor_df = labor.to_pandas_dataframe()
In [2]:
labor_df.info()
In [1]:
# Pip install packages
import os, sys
!{sys.executable} -m pip install azure-storage-blob
!{sys.executable} -m pip install pyarrow
!{sys.executable} -m pip install pandas
In [2]:
# Azure storage access info
azure_storage_account_name = "azureopendatastorage"
azure_storage_sas_token = r""
container_name = "laborstatisticscontainer"
folder_name = "lfs/"
In [3]:
from azure.storage.blob import BlockBlobServicefrom azure.storage.blob import BlobServiceClient, BlobClient, ContainerClient
if azure_storage_account_name is None or azure_storage_sas_token is None:
raise Exception(
"Provide your specific name and key for your Azure Storage account--see the Prerequisites section earlier.")
print('Looking for the first parquet under the folder ' +
folder_name + ' in container "' + container_name + '"...')
container_url = f"https://{azure_storage_account_name}.blob.core.windows.net/"
blob_service_client = BlobServiceClient(
container_url, azure_storage_sas_token if azure_storage_sas_token else None)
container_client = blob_service_client.get_container_client(container_name)
blobs = container_client.list_blobs(folder_name)
sorted_blobs = sorted(list(blobs), key=lambda e: e.name, reverse=True)
targetBlobName = ''
for blob in sorted_blobs:
if blob.name.startswith(folder_name) and blob.name.endswith('.parquet'):
targetBlobName = blob.name
break
print('Target blob to download: ' + targetBlobName)
_, filename = os.path.split(targetBlobName)
blob_client = container_client.get_blob_client(targetBlobName)
with open(filename, 'wb') as local_file:
blob_client.download_blob().download_to_stream(local_file)
In [4]:
# Read the parquet file into Pandas data frame
import pandas as pd
print('Reading the parquet file into Pandas data frame')
df = pd.read_parquet(filename)
In [5]:
# you can add your filter at below
print('Loaded as a Pandas data frame: ')
df
In [6]:
Azure Databricks
Package:
Language:
Python
Python
In [1]:
# This is a package in preview.
from azureml.opendatasets import UsLaborLFS
labor = UsLaborLFS()
labor_df = labor.to_spark_dataframe()
In [2]:
display(labor_df.limit(5))
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "laborstatisticscontainer"
blob_relative_path = "lfs/"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))
Azure Synapse
Package:
Language:
Python
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "laborstatisticscontainer"
blob_relative_path = "lfs/"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))