跳过导航

Seattle Safety Data

Seattle 911 Fire Dispatch E911 SFD Mobile Public Safety

西雅图消防部门 911 调遣。

数量和保留期

此数据集以 Parquet 格式存储。 它每天更新一次,截至 2019 年总共包含约 80 万行 (20 MB)。

此数据集包含从 2010 年至今累积的历史记录。 可使用我们的 SDK 中的参数设置来提取特定时间范围内的数据。

存储位置

此数据集存储在美国东部 Azure 区域。 建议将计算资源分配到美国东部地区,以实现相关性。

其他信息

此数据集来自西雅图市政府。 有关源链接,请参阅此处。 有关此数据集的使用条款,请查看许可与署名。 如果对数据源有任何疑问,请发送电子邮件至

通知

Microsoft 以“原样”为基础提供 AZURE 开放数据集。 Microsoft 对数据集的使用不提供任何担保(明示或暗示)、保证或条件。 在当地法律允许的范围内,Microsoft 对使用数据集而导致的任何损害或损失不承担任何责任,包括直接、必然、特殊、间接、偶发或惩罚。

此数据集是根据 Microsoft 接收源数据的原始条款提供的。 数据集可能包含来自 Microsoft 的数据。

Access

Available inWhen to use
Azure Notebooks

Quickly explore the dataset with Jupyter notebooks hosted on Azure or your local machine.

Azure Databricks

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Azure Synapse

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Preview

dataType dataSubtype dateTime category subcategory status address latitude longitude source extendedProperties
Safety 911_Fire 1/14/2021 7:30:00 AM 4RED - 2 + 1 + 1 null null 3230 Sw Avalon Way 47.564435 -122.372755 null
Safety 911_Fire 1/14/2021 7:03:00 AM Aid Response null null 1411 Boylston Av 47.613098 -122.323436 null
Safety 911_Fire 1/14/2021 7:01:00 AM Medic Response null null Boren Ave N / Republican St 47.623199 -122.335838 null
Safety 911_Fire 1/14/2021 6:59:00 AM Aid Response null null 1441 N Northlake Way 47.647811 -122.340658 null
Safety 911_Fire 1/14/2021 6:48:00 AM Aid Response null null 805 4th Av N 47.626322 -122.348863 null
Safety 911_Fire 1/14/2021 6:48:00 AM Aid Response null null 3720 Montlake Blvd Ne 47.649404 -122.304574 null
Safety 911_Fire 1/14/2021 6:29:00 AM Auto Fire Alarm null null 1816 Bellevue Av 47.617855 -122.326761 null
Safety 911_Fire 1/14/2021 6:16:00 AM Aid Response null null 4410 Meridian Ave N 47.660396 -122.333741 null
Safety 911_Fire 1/14/2021 6:10:00 AM Trans to AMR null null 747 N 135th St 47.726803 -122.347793 null
Safety 911_Fire 1/14/2021 5:56:00 AM Fire in Building null null 6823 Aurora Ave N 47.679483 -122.345426 null
Name Data type Unique Values (sample) Description
address string 191,447 517 3rd Av
318 2nd Av Et S

事件位置。

category string 232 Aid Response
Medic Response

响应类型。

dataSubtype string 1 911_Fire

“911_Fire”

dataType string 1 Safety

“Safety”

dateTime timestamp 1,508,279 2020-11-04 06:49:00
2020-05-21 00:35:00

呼叫的日期和时间。

latitude double 93,730 47.602172
47.600194

这是纬度值。 纬线平行于赤道。

longitude double 79,096 -122.330863
-122.330541

这是经度值。 经度线垂直于纬度线,并且都穿过两个极点。

Select your preferred service:

Azure Notebooks

Azure Databricks

Azure Synapse

Azure Notebooks

Package: Language: Python Python
In [1]:
# This is a package in preview.
from azureml.opendatasets import SeattleSafety

from datetime import datetime
from dateutil import parser


end_date = parser.parse('2016-01-01')
start_date = parser.parse('2015-05-01')
safety = SeattleSafety(start_date=start_date, end_date=end_date)
safety = safety.to_pandas_dataframe()
ActivityStarted, to_pandas_dataframe ActivityStarted, to_pandas_dataframe_in_worker Looking for parquet files... Reading them into Pandas dataframe... Reading Safety/Release/city=Seattle/part-00119-tid-845600952581210110-a4f62588-4996-42d1-bc79-23a9b4635c63-446962.c000.snappy.parquet under container citydatacontainer Done. ActivityCompleted: Activity=to_pandas_dataframe_in_worker, HowEnded=Success, Duration=6116.21 [ms] ActivityCompleted: Activity=to_pandas_dataframe, HowEnded=Success, Duration=6117.7 [ms]
In [2]:
safety.info()
<class 'pandas.core.frame.DataFrame'> Int64Index: 68346 entries, 14 to 1382908 Data columns (total 11 columns): dataType 68346 non-null object dataSubtype 68346 non-null object dateTime 68346 non-null datetime64[ns] category 68346 non-null object subcategory 0 non-null object status 0 non-null object address 68345 non-null object latitude 68346 non-null float64 longitude 68346 non-null float64 source 0 non-null object extendedProperties 68346 non-null object dtypes: datetime64[ns](1), float64(2), object(8) memory usage: 6.3+ MB
In [1]:
# Pip install packages
import os, sys

!{sys.executable} -m pip install azure-storage-blob
!{sys.executable} -m pip install pyarrow
!{sys.executable} -m pip install pandas
In [2]:
# Azure storage access info
azure_storage_account_name = "azureopendatastorage"
azure_storage_sas_token = r""
container_name = "citydatacontainer"
folder_name = "Safety/Release/city=Seattle"
In [3]:
from azure.storage.blob import BlockBlobServicefrom azure.storage.blob import BlobServiceClient, BlobClient, ContainerClient

if azure_storage_account_name is None or azure_storage_sas_token is None:
    raise Exception(
        "Provide your specific name and key for your Azure Storage account--see the Prerequisites section earlier.")

print('Looking for the first parquet under the folder ' +
      folder_name + ' in container "' + container_name + '"...')
container_url = f"https://{azure_storage_account_name}.blob.core.windows.net/"
blob_service_client = BlobServiceClient(
    container_url, azure_storage_sas_token if azure_storage_sas_token else None)

container_client = blob_service_client.get_container_client(container_name)
blobs = container_client.list_blobs(folder_name)
sorted_blobs = sorted(list(blobs), key=lambda e: e.name, reverse=True)
targetBlobName = ''
for blob in sorted_blobs:
    if blob.name.startswith(folder_name) and blob.name.endswith('.parquet'):
        targetBlobName = blob.name
        break

print('Target blob to download: ' + targetBlobName)
_, filename = os.path.split(targetBlobName)
blob_client = container_client.get_blob_client(targetBlobName)
with open(filename, 'wb') as local_file:
    blob_client.download_blob().download_to_stream(local_file)
In [4]:
# Read the parquet file into Pandas data frame
import pandas as pd

print('Reading the parquet file into Pandas data frame')
df = pd.read_parquet(filename)
In [5]:
# you can add your filter at below
print('Loaded as a Pandas data frame: ')
df
In [6]:
 

Azure Databricks

Package: Language: Python Python
In [1]:
# This is a package in preview.
# You need to pip install azureml-opendatasets in Databricks cluster. https://docs.microsoft.com/en-us/azure/data-explorer/connect-from-databricks#install-the-python-library-on-your-azure-databricks-cluster
from azureml.opendatasets import SeattleSafety

from datetime import datetime
from dateutil import parser


end_date = parser.parse('2016-01-01')
start_date = parser.parse('2015-05-01')
safety = SeattleSafety(start_date=start_date, end_date=end_date)
safety = safety.to_spark_dataframe()
ActivityStarted, to_spark_dataframe ActivityStarted, to_spark_dataframe_in_worker ActivityCompleted: Activity=to_spark_dataframe_in_worker, HowEnded=Success, Duration=2751.74 [ms] ActivityCompleted: Activity=to_spark_dataframe, HowEnded=Success, Duration=2753.86 [ms]
In [2]:
display(safety.limit(5))
dataTypedataSubtypedateTimecategorysubcategorystatusaddresslatitudelongitudesourceextendedProperties
Safety911_Fire2015-05-04T19:18:42.000+0000Medic Responsenullnull7101 38th Av S47.538872-122.284744nullincident_number:F150047883
Safety911_Fire2015-12-01T23:29:47.000+0000Aid Responsenullnull1011 S Weller St47.597509-122.319511nullincident_number:F150137603
Safety911_Fire2015-12-13T20:20:59.000+0000Aid Responsenullnull10049 College Way N47.701742-122.335029nullincident_number:F150142622
Safety911_Fire2015-11-23T00:19:21.000+0000Medic Responsenullnull9428 58th Av S47.518216-122.260497nullincident_number:F150134268
Safety911_Fire2015-05-19T16:25:55.000+0000Medic Responsenullnull10011 51st Av S47.510803-122.27006nullincident_number:F150054054
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "citydatacontainer"
blob_relative_path = "Safety/Release/city=Seattle"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))

Azure Synapse

Package: Language: Python Python SQL
In [21]:
# This is a package in preview.
from azureml.opendatasets import SeattleSafety

from datetime import datetime
from dateutil import parser


end_date = parser.parse('2016-01-01')
start_date = parser.parse('2015-05-01')
safety = SeattleSafety(start_date=start_date, end_date=end_date)
safety = safety.to_spark_dataframe()
In [22]:
# Display top 5 rows
display(safety.limit(5))
Out[22]:
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "citydatacontainer"
blob_relative_path = "Safety/Release/city=Seattle"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))
SELECT
    TOP 100 *
FROM
    OPENROWSET(
        BULK             'https://azureopendatastorage.blob.core.windows.net/citydatacontainer/Safety/Release/city=Seattle/*.parquet',
        FORMAT         = 'parquet'
    ) AS [r];

City Safety

From the Urban Innovation Initiative at Microsoft Research, databricks notebook for analytics with safety data (311 and 911 call data) from major U.S. cities. Analyses show frequency distributions and geographic clustering of safety issues within cities.