Gezintiyi Atla

NYC Taxi & Limousine Commission - green taxi trip records

NYC TLC Taxi green

Yeşil taksi yolculuk kayıtları, yolcu alma ve bırakma tarihlerini/saatlerini, yolcu alma ve bırakma konumlarını, yolculuk mesafelerini, listeli tarifeleri, fiyat türlerini, ödeme türlerini ve sürücü tarafından bildirilen yolcu sayılarını yakalayan alanları içerir.

Hacim ve Saklama

Bu veri kümesi Parquet biçiminde depolanır. 2018 itibarıyla toplamda yaklaşık 80 milyon satır (2 GB) mevcuttur.

Bu veri kümesi 2009 ile 2018 arasında birikmiş geçmiş kayıtları içermektedir. Belirli bir zaman aralığı içindeki verileri getirmek için SDK’mızdaki parametre ayarlarını kullanabilirsiniz.

Depolama Konumu

Bu veri kümesi Doğu ABD Azure bölgesinde depolanır. Benzeşim için Doğu ABD’deki işlem kaynaklarının ayrılması önerilir.

Ek Bilgiler

NYC Taksi ve Limuzin Komisyonu (TLC):

Veriler Taksi ve Kiralık Taksi Yolcu Geliştirme Programları (TPEP/LPEP) kapsamında yetkilendirilmiş teknoloji sağlayıcıları tarafından toplanıp NYC Taksi ve Limuzin Komisyonu’na (TLC) sunulmuştur. Yolculuk veirleri TLC tarafından oluşturulmamıştır ve TLC bu verilerin doğruluğu hakkında bir taahhütte bulunmaz.

TLC Yolculuk Kayıt Verileri hakkında ek bilgiler burada ve burada bulunabilir.

Bildirimler

MICROSOFT, AZURE AÇIK VERİ KÜMELERİNİ “OLDUĞU GİBİ” SAĞLAR. MICROSOFT, VERİ KÜMELERİNİ KULLANMANIZLA İLGİLİ AÇIK VEYA ÖRTÜLÜ HİÇBİR GARANTİ VEYA TAAHHÜTTE BULUNMAZ. YEREL KANUNLARINIZIN İZİN VERDİĞİ ÖLÇÜDE, MICROSOFT DOĞRUDAN, BAĞLI, ÖZEL, DOLAYLI, TESADÜFİ VEYA CEZA GEREKTİRENLER DE DAHİL OLMAK ÜZERE HERHANGİ BİR HASAR YA DA KAYIPLA İLGİLİ HİÇBİR SORUMLULUK KABUL ETMEZ.

Bu veri kümesi Microsoft’un kaynak verileri aldığı orijinal hükümler kapsamında sağlanır. Veri kümesi Microsoft’tan alınan verileri içerebilir.

Access

Available inWhen to use
Azure Notebooks

Quickly explore the dataset with Jupyter notebooks hosted on Azure or your local machine.

Azure Databricks

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Azure Synapse

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Preview

vendorID lpepPickupDatetime lpepDropoffDatetime passengerCount tripDistance puLocationId doLocationId rateCodeID storeAndFwdFlag paymentType fareAmount extra mtaTax improvementSurcharge tipAmount tollsAmount totalAmount tripType puYear puMonth
2 6/24/2081 5:40:37 PM 6/24/2081 6:42:47 PM 1 16.95 93 117 1 N 1 52 1 0.5 0.3 0 2.16 55.96 1 2081 6
2 11/28/2030 12:19:29 AM 11/28/2030 12:25:37 AM 1 1.08 42 247 1 N 2 6.5 0 0.5 0.3 0 0 7.3 1 2030 11
2 11/28/2030 12:14:50 AM 11/28/2030 12:14:54 AM 1 0.03 42 42 5 N 2 5 0 0 0 0 0 5 2 2030 11
2 11/14/2020 11:38:07 AM 11/14/2020 11:42:22 AM 1 0.63 129 129 1 N 2 4.5 1 0.5 0.3 0 0 6.3 1 2020 11
2 11/14/2020 9:55:36 AM 11/14/2020 10:04:54 AM 1 3.8 82 138 1 N 2 12.5 1 0.5 0.3 0 0 14.3 1 2020 11
2 8/26/2019 4:18:37 PM 8/26/2019 4:19:35 PM 1 0 264 264 1 N 2 1 0 0.5 0.3 0 0 1.8 1 2019 8
2 7/1/2019 8:28:33 AM 7/1/2019 8:32:33 AM 1 0.71 7 7 1 N 1 5 0 0.5 0.3 1.74 0 7.54 1 2019 7
2 7/1/2019 12:04:53 AM 7/1/2019 12:21:56 AM 1 2.71 223 145 1 N 2 13 0.5 0.5 0.3 0 0 14.3 1 2019 7
2 7/1/2019 12:04:11 AM 7/1/2019 12:21:15 AM 1 3.14 166 142 1 N 2 14.5 0.5 0.5 0.3 0 0 18.55 1 2019 7
2 7/1/2019 12:03:37 AM 7/1/2019 12:09:27 AM 1 0.78 74 74 1 N 1 6 0.5 0.5 0.3 1.46 0 8.76 1 2019 7
Name Data type Unique Values (sample) Description
doLocationId string 264 74
42

Taksimetrenin devre dışı olduğu DOLocationID TLC Taksi Bölgesi.

dropoffLatitude double 109,721 40.7743034362793
40.77431869506836

2016.07’den itibaren kullanım dışı bırakıldı

dropoffLongitude double 75,502 -73.95272827148438
-73.95274353027344

2016.07’den itibaren kullanım dışı bırakıldı

extra double 202 0.5
1.0

Çeşitli ekstralar ve ek ücretler. Şu anda buna yalnızca 0,50 ABD doları ve 1 ABD doları yoğun saat ve gecelik ücretler dahildir.

fareAmount double 10,367 6.0
5.5

Ölçüm cihazı tarafından hesaplanan saat-mesafe tarifesi.

improvementSurcharge string 92 0.3
0

Bayrak indirildiği zaman çağrılan yolculuklarda değerlendirilen 0,30 ABD doları iyileştirme ek ücreti. İyileştirme ek ücreti 2015 yılında toplanmaya başlamıştır.

lpepDropoffDatetime timestamp 58,100,713 2016-05-22 00:00:00
2016-05-09 00:00:00

Ölçümün devre dışı olduğu tarih ve saat.

lpepPickupDatetime timestamp 58,157,349 2013-10-22 12:40:36
2014-08-09 15:54:25

Ölçümün devreye girdiği tarih ve saat.

mtaTax double 34 0.5
-0.5

Kullanımdaki tarifeli fiyata göre otomatik olarak tetiklenen 0,50 ABD doları MTA vergisi.

passengerCount int 10 1
2

Araçtaki yolcu sayısı.

Bu değer sürücü tarafından girilir.

paymentType int 5 2
1

Yolcunun seyahat ücretini nasıl ödediğini belirten sayısal kod.

1= Kredi kartı

2= Nakit

3= Ücretsiz

4= Anlaşmazlık

5= Bilinmiyor

6= Yolculuk iptal edildi

pickupLatitude double 95,110 40.721351623535156
40.721336364746094

2016.07’den itibaren kullanım dışı bırakıldı

pickupLongitude double 55,722 -73.84429931640625
-73.84429168701172

2016.07’den itibaren kullanım dışı bırakıldı

puLocationId string 264 74
41

Taksimetrenin devreye girdiği TLC Taksi Bölgesi.

puMonth int 12 3
5
puYear int 14 2015
2016
rateCodeID int 7 1
5

Yolculuğun sonunda geçerli olan son fiyat kodu.

1= Standart fiyat

2= JFK

3= Newark

4= Nassau veya Westchester

5= Anlaşılan tarife

6= Grup fiyatı

storeAndFwdFlag string 2 N
Y

Bu bayrak, yolculuk kaydının satıcıya gönderilmeden önce araç belleğinde tutulup tutulmadığını, yani aracın sunucuyla bağlantısı olmadığı için “depola ve ilet” işleminin yapılıp yapılmadığını gösterir.

E= depola ve ilet yolculuğu

H= depola ve ilet yolculuğu değil

tipAmount double 6,206 1.0
2.0

Bahşiş tutarı – Kredi kartı bahşişleri için bu alan otomatik olarak doldurulur. Nakit bahşişler dahil değildir.

tollsAmount double 2,150 5.54
5.76

Yolculukta ödenen tüm ücretlerin toplam tutarı.

totalAmount double 20,188 7.8
6.8

Yolculardan alınan toplam ücret. Nakit bahşişler dahil değildir.

tripDistance double 7,060 0.9
1.0

Taksimetrenin mil cinsinden bildirdiği geçen yolculuk mesafesi.

tripType int 3 1
2

Yolculuğun sokaktan çevirme veya kullanımdaki tarifeli fiyata göre otomatik olarak atanan ancak sürücü tarafından değiştirilebilen bir gönderme olduğunu gösteren kod.

1= Sokaktan çevirme

2= Gönderme

vendorID int 2 2
1

Kaydı oluşturan LPEP sağlayıcısını gösteren kod.

1= Creative Mobile Technologies, LLC;

2= VeriFone Inc.

Select your preferred service:

Azure Notebooks

Azure Databricks

Azure Synapse

Azure Notebooks

Package: Language: Python Python
In [1]:
# This is a package in preview.
from azureml.opendatasets import NycTlcGreen

from datetime import datetime
from dateutil import parser


end_date = parser.parse('2018-06-06')
start_date = parser.parse('2018-05-01')
nyc_tlc = NycTlcGreen(start_date=start_date, end_date=end_date)
nyc_tlc_df = nyc_tlc.to_pandas_dataframe()
ActivityStarted, to_pandas_dataframe ActivityStarted, to_pandas_dataframe_in_worker Target paths: ['/puYear=2018/puMonth=5/', '/puYear=2018/puMonth=6/'] Looking for parquet files... Reading them into Pandas dataframe... Reading green/puYear=2018/puMonth=5/part-00087-tid-6037743401120983271-619c4849-c957-4290-a1b8-66832cb385b6-12506.c000.snappy.parquet under container nyctlc Reading green/puYear=2018/puMonth=6/part-00171-tid-6037743401120983271-619c4849-c957-4290-a1b8-66832cb385b6-12590.c000.snappy.parquet under container nyctlc Done. ActivityCompleted: Activity=to_pandas_dataframe_in_worker, HowEnded=Success, Duration=5555.67 [ms] ActivityCompleted: Activity=to_pandas_dataframe, HowEnded=Success, Duration=5559.68 [ms]
In [2]:
nyc_tlc_df.info()
<class 'pandas.core.frame.DataFrame'> Int64Index: 923257 entries, 0 to 498783 Data columns (total 23 columns): vendorID 923257 non-null int32 lpepPickupDatetime 923257 non-null datetime64[ns] lpepDropoffDatetime 923257 non-null datetime64[ns] passengerCount 923257 non-null int32 tripDistance 923257 non-null float64 puLocationId 923257 non-null object doLocationId 923257 non-null object pickupLongitude 0 non-null float64 pickupLatitude 0 non-null float64 dropoffLongitude 0 non-null float64 dropoffLatitude 0 non-null float64 rateCodeID 923257 non-null int32 storeAndFwdFlag 923257 non-null object paymentType 923257 non-null int32 fareAmount 923257 non-null float64 extra 923257 non-null float64 mtaTax 923257 non-null float64 improvementSurcharge 923257 non-null object tipAmount 923257 non-null float64 tollsAmount 923257 non-null float64 ehailFee 0 non-null float64 totalAmount 923257 non-null float64 tripType 923257 non-null int32 dtypes: datetime64[ns](2), float64(12), int32(5), object(4) memory usage: 151.4+ MB
In [1]:
# Pip install packages
import os, sys

!{sys.executable} -m pip install azure-storage-blob
!{sys.executable} -m pip install pyarrow
!{sys.executable} -m pip install pandas
In [2]:
# Azure storage access info
azure_storage_account_name = "azureopendatastorage"
azure_storage_sas_token = r""
container_name = "nyctlc"
folder_name = "green"
In [3]:
from azure.storage.blob import BlockBlobServicefrom azure.storage.blob import BlobServiceClient, BlobClient, ContainerClient

if azure_storage_account_name is None or azure_storage_sas_token is None:
    raise Exception(
        "Provide your specific name and key for your Azure Storage account--see the Prerequisites section earlier.")

print('Looking for the first parquet under the folder ' +
      folder_name + ' in container "' + container_name + '"...')
container_url = f"https://{azure_storage_account_name}.blob.core.windows.net/"
blob_service_client = BlobServiceClient(
    container_url, azure_storage_sas_token if azure_storage_sas_token else None)

container_client = blob_service_client.get_container_client(container_name)
blobs = container_client.list_blobs(folder_name)
sorted_blobs = sorted(list(blobs), key=lambda e: e.name, reverse=True)
targetBlobName = ''
for blob in sorted_blobs:
    if blob.name.startswith(folder_name) and blob.name.endswith('.parquet'):
        targetBlobName = blob.name
        break

print('Target blob to download: ' + targetBlobName)
_, filename = os.path.split(targetBlobName)
blob_client = container_client.get_blob_client(targetBlobName)
with open(filename, 'wb') as local_file:
    blob_client.download_blob().download_to_stream(local_file)
In [4]:
# Read the parquet file into Pandas data frame
import pandas as pd

print('Reading the parquet file into Pandas data frame')
df = pd.read_parquet(filename)
In [5]:
# you can add your filter at below
print('Loaded as a Pandas data frame: ')
df
In [6]:
 

Azure Databricks

Package: Language: Python Python
In [1]:
# This is a package in preview.
# You need to pip install azureml-opendatasets in Databricks cluster. https://docs.microsoft.com/en-us/azure/data-explorer/connect-from-databricks#install-the-python-library-on-your-azure-databricks-cluster
from azureml.opendatasets import NycTlcGreen

from datetime import datetime
from dateutil import parser


end_date = parser.parse('2018-06-06')
start_date = parser.parse('2018-05-01')
nyc_tlc = NycTlcGreen(start_date=start_date, end_date=end_date)
nyc_tlc_df = nyc_tlc.to_spark_dataframe()
ActivityStarted, to_spark_dataframe ActivityStarted, to_spark_dataframe_in_worker ActivityCompleted: Activity=to_spark_dataframe_in_worker, HowEnded=Success, Duration=47328.45 [ms] ActivityCompleted: Activity=to_spark_dataframe, HowEnded=Success, Duration=47332.79 [ms]
In [2]:
display(nyc_tlc_df.limit(5))
vendorIDlpepPickupDatetimelpepDropoffDatetimepassengerCounttripDistancepuLocationIddoLocationIdpickupLongitudepickupLatitudedropoffLongitudedropoffLatituderateCodeIDstoreAndFwdFlagpaymentTypefareAmountextramtaTaximprovementSurchargetipAmounttollsAmountehailFeetotalAmounttripTypepuYearpuMonth
22018-05-23T23:14:19.000+00002018-05-23T23:17:43.000+000010.611642nullnullnullnull1N14.50.00.50.30.010.0null5.31120185
22018-05-23T23:24:21.000+00002018-05-23T23:33:00.000+000011.1442116nullnullnullnull1N17.00.00.50.31.560.0null9.36120185
22018-05-07T08:52:57.000+00002018-05-08T03:14:08.000+000011.27119247nullnullnullnull1N27.50.00.50.30.00.0null8.3120185
22018-05-07T03:16:20.000+00002018-05-07T03:39:26.000+000013.8224718nullnullnullnull1N117.50.00.50.30.00.0null18.3120185
22018-05-07T03:40:25.000+00002018-05-07T03:46:11.000+000010.9818136nullnullnullnull1N26.00.00.50.30.00.0null6.8120185
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "nyctlc"
blob_relative_path = "green"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))

Azure Synapse

Package: Language: Python Python
In [6]:
# This is a package in preview.
from azureml.opendatasets import NycTlcGreen

from datetime import datetime
from dateutil import parser


end_date = parser.parse('2018-06-06')
start_date = parser.parse('2018-05-01')
nyc_tlc = NycTlcGreen(start_date=start_date, end_date=end_date)
nyc_tlc_df = nyc_tlc.to_spark_dataframe()
In [7]:
# Display top 5 rows
display(nyc_tlc_df.limit(5))
Out[7]:
In [9]:
# Display data statistic information
display(nyc_tlc_df, summary = True)
Out[9]:
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "nyctlc"
blob_relative_path = "green"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))