Hoppa över navigering

Seattle Safety Data

Seattle 911 Fire Dispatch E911 SFD Mobile Public Safety

Larmrapporter från brandkåren i Seattle.

Volym och kvarhållning

Datamängden lagras i Parquet-format. Den uppdateras dagligen och innehåller cirka 800 000 rader (20 MB) sammanlagt 2019.

Datamängden innehåller historiska poster som ackumulerats från 2010 fram till nutid. Du kan använda parameterinställningar i vår SDK till att hämta data inom ett specifikt tidsintervall.

Lagringsplats

Datamängden lagras i Azure-regionen Östra USA. Vi rekommenderar att beräkningsresurser tilldelas i Östra USA av tillhörighetsskäl.

Ytterligare Information

Den här datamängden hämtas från Seattles myndigheter. Källänken finns här. I Licensing and Attribution finns användningsvillkoren för denna datamängd. Du kan skicka ett e-postmeddelande till om du har frågor om datakällan.

Meddelanden

MICROSOFT TILLHANDAHÅLLER AZURE OPEN DATASETS I BEFINTLIGT SKICK. MICROSOFT UTFÄRDAR INTE NÅGRA GARANTIER ELLER VILLKOR, UTTRYCKLIGA ELLER UNDERFÖRSTÅDDA, AVSEENDE ANVÄNDNINGEN AV DATAMÄNGDERNA. I DEN UTSTRÄCKNING DET ÄR TILLÅTET ENLIGT NATIONELL LAGSTIFTNING, FRISKRIVER MICROSOFT SIG FRÅN ALLT ANSVAR BETRÄFFANDE SKADOR OCH FÖRLUSTER, INKLUSIVE DIREKTA SKADOR, FÖLJDSKADOR, SÄRSKILDA SKADOR, INDIREKTA SKADOR, ELLER OFÖRUTSEDDA SKADOR FRÅN ANVÄNDNINGEN AV DATAMÄNGDERNA.

Datamängden tillhandahålls enligt de ursprungliga villkor som gällde när Microsoft tog emot källdatan. Datamängden kan innehålla data från Microsoft.

Access

Available inWhen to use
Azure Notebooks

Quickly explore the dataset with Jupyter notebooks hosted on Azure or your local machine.

Azure Databricks

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Azure Synapse

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Preview

dataType dataSubtype dateTime category subcategory status address latitude longitude source extendedProperties
Safety 911_Fire 5/6/2021 11:26:00 AM MVI - Motor Vehicle Incident null null 5601 1st Ave S 47.552704 -122.334215 null
Safety 911_Fire 5/6/2021 11:25:00 AM AFA4 - Auto Alarm 2 + 1 + 1 null null 1420 5th Ave 47.609878 -122.334842 null
Safety 911_Fire 5/6/2021 11:19:00 AM Auto Fire Alarm null null 5600 Kirkwood Pl N 47.66901 -122.331734 null
Safety 911_Fire 5/6/2021 11:16:00 AM Rubbish Fire null null 12301 Stone Ave N 47.718952 -122.342237 null
Safety 911_Fire 5/6/2021 11:12:00 AM Medic Response null null 3600 23rd Ave Sw 47.57142 -122.362034 null
Safety 911_Fire 5/6/2021 11:08:00 AM Aid Response null null 1700 Airport Way S 47.588225 -122.321391 null
Safety 911_Fire 5/6/2021 11:06:00 AM Auto Fire Alarm null null 1103 16th Ave 47.611553 -122.311479 null
Safety 911_Fire 5/6/2021 11:05:00 AM Aid Response null null 4437 Rainier Ave S 47.563613 -122.288054 null
Safety 911_Fire 5/6/2021 11:02:00 AM MVI - Motor Vehicle Incident null null Ne 103rd St / 5th Ave Ne 47.70314 -122.323148 null
Safety 911_Fire 5/6/2021 11:01:00 AM MVI - Motor Vehicle Incident null null 3518 Wallingford Ave N 47.649423 -122.336336 null
Name Data type Unique Values (sample) Description
address string 196,858 517 3rd Av
318 2nd Av Et S

Plats för incidenten.

category string 231 Aid Response
Medic Response

Svarstyp.

dataSubtype string 1 911_Fire

“911_Fire”

dataType string 1 Safety

”Säkerhet”

dateTime timestamp 1,532,155 2020-11-04 06:49:00
2020-08-07 12:44:00

Datum och tid för samtalet.

latitude double 94,312 47.602172
47.600194

Detta är latitudvärdet. Latitudlinjerna är parallella med ekvatorn.

longitude double 79,476 -122.330863
-122.330541

Detta är longitudvärdet. Longitudlinjerna löper lodrätt mot latitudlinjerna och alla linjer passerar båda polerna.

Select your preferred service:

Azure Notebooks

Azure Databricks

Azure Synapse

Azure Notebooks

Package: Language: Python Python
In [1]:
# This is a package in preview.
from azureml.opendatasets import SeattleSafety

from datetime import datetime
from dateutil import parser


end_date = parser.parse('2016-01-01')
start_date = parser.parse('2015-05-01')
safety = SeattleSafety(start_date=start_date, end_date=end_date)
safety = safety.to_pandas_dataframe()
ActivityStarted, to_pandas_dataframe ActivityStarted, to_pandas_dataframe_in_worker Looking for parquet files... Reading them into Pandas dataframe... Reading Safety/Release/city=Seattle/part-00119-tid-845600952581210110-a4f62588-4996-42d1-bc79-23a9b4635c63-446962.c000.snappy.parquet under container citydatacontainer Done. ActivityCompleted: Activity=to_pandas_dataframe_in_worker, HowEnded=Success, Duration=6116.21 [ms] ActivityCompleted: Activity=to_pandas_dataframe, HowEnded=Success, Duration=6117.7 [ms]
In [2]:
safety.info()
<class 'pandas.core.frame.DataFrame'> Int64Index: 68346 entries, 14 to 1382908 Data columns (total 11 columns): dataType 68346 non-null object dataSubtype 68346 non-null object dateTime 68346 non-null datetime64[ns] category 68346 non-null object subcategory 0 non-null object status 0 non-null object address 68345 non-null object latitude 68346 non-null float64 longitude 68346 non-null float64 source 0 non-null object extendedProperties 68346 non-null object dtypes: datetime64[ns](1), float64(2), object(8) memory usage: 6.3+ MB
In [1]:
# Pip install packages
import os, sys

!{sys.executable} -m pip install azure-storage-blob
!{sys.executable} -m pip install pyarrow
!{sys.executable} -m pip install pandas
In [2]:
# Azure storage access info
azure_storage_account_name = "azureopendatastorage"
azure_storage_sas_token = r""
container_name = "citydatacontainer"
folder_name = "Safety/Release/city=Seattle"
In [3]:
from azure.storage.blob import BlockBlobServicefrom azure.storage.blob import BlobServiceClient, BlobClient, ContainerClient

if azure_storage_account_name is None or azure_storage_sas_token is None:
    raise Exception(
        "Provide your specific name and key for your Azure Storage account--see the Prerequisites section earlier.")

print('Looking for the first parquet under the folder ' +
      folder_name + ' in container "' + container_name + '"...')
container_url = f"https://{azure_storage_account_name}.blob.core.windows.net/"
blob_service_client = BlobServiceClient(
    container_url, azure_storage_sas_token if azure_storage_sas_token else None)

container_client = blob_service_client.get_container_client(container_name)
blobs = container_client.list_blobs(folder_name)
sorted_blobs = sorted(list(blobs), key=lambda e: e.name, reverse=True)
targetBlobName = ''
for blob in sorted_blobs:
    if blob.name.startswith(folder_name) and blob.name.endswith('.parquet'):
        targetBlobName = blob.name
        break

print('Target blob to download: ' + targetBlobName)
_, filename = os.path.split(targetBlobName)
blob_client = container_client.get_blob_client(targetBlobName)
with open(filename, 'wb') as local_file:
    blob_client.download_blob().download_to_stream(local_file)
In [4]:
# Read the parquet file into Pandas data frame
import pandas as pd

print('Reading the parquet file into Pandas data frame')
df = pd.read_parquet(filename)
In [5]:
# you can add your filter at below
print('Loaded as a Pandas data frame: ')
df
In [6]:
 

Azure Databricks

Package: Language: Python Python
In [1]:
# This is a package in preview.
# You need to pip install azureml-opendatasets in Databricks cluster. https://docs.microsoft.com/en-us/azure/data-explorer/connect-from-databricks#install-the-python-library-on-your-azure-databricks-cluster
from azureml.opendatasets import SeattleSafety

from datetime import datetime
from dateutil import parser


end_date = parser.parse('2016-01-01')
start_date = parser.parse('2015-05-01')
safety = SeattleSafety(start_date=start_date, end_date=end_date)
safety = safety.to_spark_dataframe()
ActivityStarted, to_spark_dataframe ActivityStarted, to_spark_dataframe_in_worker ActivityCompleted: Activity=to_spark_dataframe_in_worker, HowEnded=Success, Duration=2751.74 [ms] ActivityCompleted: Activity=to_spark_dataframe, HowEnded=Success, Duration=2753.86 [ms]
In [2]:
display(safety.limit(5))
dataTypedataSubtypedateTimecategorysubcategorystatusaddresslatitudelongitudesourceextendedProperties
Safety911_Fire2015-05-04T19:18:42.000+0000Medic Responsenullnull7101 38th Av S47.538872-122.284744nullincident_number:F150047883
Safety911_Fire2015-12-01T23:29:47.000+0000Aid Responsenullnull1011 S Weller St47.597509-122.319511nullincident_number:F150137603
Safety911_Fire2015-12-13T20:20:59.000+0000Aid Responsenullnull10049 College Way N47.701742-122.335029nullincident_number:F150142622
Safety911_Fire2015-11-23T00:19:21.000+0000Medic Responsenullnull9428 58th Av S47.518216-122.260497nullincident_number:F150134268
Safety911_Fire2015-05-19T16:25:55.000+0000Medic Responsenullnull10011 51st Av S47.510803-122.27006nullincident_number:F150054054
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "citydatacontainer"
blob_relative_path = "Safety/Release/city=Seattle"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))

Azure Synapse

Package: Language: Python Python SQL
In [21]:
# This is a package in preview.
from azureml.opendatasets import SeattleSafety

from datetime import datetime
from dateutil import parser


end_date = parser.parse('2016-01-01')
start_date = parser.parse('2015-05-01')
safety = SeattleSafety(start_date=start_date, end_date=end_date)
safety = safety.to_spark_dataframe()
In [22]:
# Display top 5 rows
display(safety.limit(5))
Out[22]:
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "citydatacontainer"
blob_relative_path = "Safety/Release/city=Seattle"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))
SELECT
    TOP 100 *
FROM
    OPENROWSET(
        BULK             'https://azureopendatastorage.blob.core.windows.net/citydatacontainer/Safety/Release/city=Seattle/*.parquet',
        FORMAT         = 'parquet'
    ) AS [r];

City Safety

From the Urban Innovation Initiative at Microsoft Research, databricks notebook for analytics with safety data (311 and 911 call data) from major U.S. cities. Analyses show frequency distributions and geographic clustering of safety issues within cities.