Hoppa över navigering

NASADEM

SatelliteImagery EarthObservation AIforEarth NASA

Global topografisk information från NASADEM-programmet.

NASADEM tillhandahåller globala topografiska data med en vågrät upplösning på 1 bågsekund (ca 30 m), som huvudsakligen baseras på data från Shuttle Radar Topography Mission (SRTM).

Lagringsresurser

Data lagras i blobbar i datacentret Östra USA, i följande blobcontainer:

https://nasadem.blob.core.windows.net/nasadem-nc

I containern organiseras datan efter:

v001/NASADEM_NC_[lat_tile][lon_tile].[extension]

lat_tile är ett tecken (”n” eller ”s”) plus ett 2-siffrigt latitudvärde, som härleds från latituden som representeras av respektive kartruta. Du hittar latitudkoden för en viss latitud genom att köra en floor()-åtgärd, använda det absoluta värdet, lägga till prefixet ”n” för positiva latituder (inklusive noll) och ”s” för negativa latituder och trimma till två siffror. Exempelvis blir latituden 35,3606 ”n35”.

long_tile är ett tecken (”e” eller ”w”) plus ett 3-siffrigt longitudvärde, som härleds från longituden som representeras av respektive kartruta. Du hittar longitudkoden för en viss longitud genom att köra en floor()-åtgärd, använda det absoluta värdet, lägga till prefixet ”e” för positiva latituder (inklusive noll) och ”w” för negativa latituder och trimma till tre siffror. Exempelvis blir longituden 138,72 ”e138”.

För varje kartruta finns filnamn med tre tillägg:

  • 1.jpg (en förhandsgranskningsbild)
  • nc (själva informationen)
  • nc.xml (metadata för generering av kartrutor)

Bilder lagras i NetCDF-format.

Ett komplett Python-exempel som visar hur du kommer åt och ritar ut NASADEM-data finns i anteckningsboken under “Data Access”.

Vi tillhandahåller också en skrivskyddad SAS-token (signatur för delad åtkomst) som ger åtkomst till NASADEM-data via exempelvis BlobFuse, vilket innebär att du kan montera blobcontainrar som enheter:

st=2020-03-16T17%3A16%3A02Z&se=2034-03-17T17%3A16%3A00Z&sp=rl&sv=2018-03-28&sr=c&sig=opfihPRJOhedqmupra5pf7esHL52nxrxlgJd3UPwRmY%3D

Monteringsanvisningarna för Linux finns här.

Storskalig bearbetning utförs bäst i Azure-datacentret i regionen USA, östra, där bilderna lagras. Om du använder NASADEM-data i miljövetenskapsprogram kan du ansöka om AI for Earth Grant som kan vara till hjälp vid dina beräkningar.

Index

En fullständig lista över filer finns här.

Licens- och attributionsinformation

NASADEM-data kan användas utan restriktioner för alla ändamål, såväl kommersiella som andra, utan begränsningar i form av royaltyer eller annat. Inget särskilt tillstånd eller ersättning krävs. Detta gäller även vid återförsäljning av exakta data, bilder eller andra härledda produkter.

Inkludera om möjligt “Courtesy NASA/JPL-Caltech” när du använder dessa data.

Fin bild


Topografi av Fuji.

Kontakt

Om du har frågor om den här datamängden är du välkommen att kontakta aiforearthdatasets@microsoft.com.

Meddelanden

MICROSOFT TILLHANDAHÅLLER AZURE OPEN DATASETS I BEFINTLIGT SKICK. MICROSOFT UTFÄRDAR INTE NÅGRA GARANTIER ELLER VILLKOR, UTTRYCKLIGA ELLER UNDERFÖRSTÅDDA, AVSEENDE ANVÄNDNINGEN AV DATAMÄNGDERNA. I DEN UTSTRÄCKNING DET ÄR TILLÅTET ENLIGT NATIONELL LAGSTIFTNING, FRISKRIVER MICROSOFT SIG FRÅN ALLT ANSVAR BETRÄFFANDE SKADOR OCH FÖRLUSTER, INKLUSIVE DIREKTA SKADOR, FÖLJDSKADOR, SÄRSKILDA SKADOR, INDIREKTA SKADOR, ELLER OFÖRUTSEDDA SKADOR FRÅN ANVÄNDNINGEN AV DATAMÄNGDERNA.

Datamängden tillhandahålls enligt de ursprungliga villkor som gällde när Microsoft tog emot källdatan. Datamängden kan innehålla data från Microsoft.

Access

Available inWhen to use
Azure Notebooks

Quickly explore the dataset with Jupyter notebooks hosted on Azure or your local machine.

Select your preferred service:

Azure Notebooks

Azure Notebooks

Package: Language: Python

Demo notebook for accessing NASADEM data on Azure

This notebook provides an example of accessing NASADEM data from blob storage on Azure, including (1) finding the NASADEM tile corresponding to a lat/lon coordinate, (2) retrieving that tile from blob storage, (3) opening the downloaded file using the NetCDF4 library, and (4) rendering the tile in a couple different ways.

NASADEM data are stored in the East US data center, so this notebook will run most efficiently on Azure compute located in East US. We recommend that substantial computation depending on NASADEM data also be situated in East US. If you are using NASADEM data for environmental science applications, consider applying for an AI for Earth grant to support your compute requirements.

Imports and environment

In [26]:
# Mostly-standard imports
import os
import tempfile
import numpy as np
import shutil
import urllib
import math
import matplotlib.pyplot as plt

from mpl_toolkits.basemap import Basemap

# Less-common-but-still-pip-installable imports
from netCDF4 import Dataset

# pip install progressbar2, not progressbar
import progressbar

# Storage locations are documented at http://aka.ms/ai4edata-nasadem
nasadem_account_name = 'nasadem'
nasadem_container_name = 'nasadem-nc'
nasadem_account_url = 'https://' + nasadem_account_name + '.blob.core.windows.net'
nasadem_blob_root = nasadem_account_url + '/' + nasadem_container_name + '/v001/'

# A full list of files is available at:
#
# https://nasadem.blob.core.windows.net/nasadem-nc/v001/index/file_list.txt
nasadem_file_index_url = nasadem_blob_root + 'index/nasadem_file_list.txt'

nasadem_content_extension = '.nc'
nasadem_file_prefix = 'NASADEM_NC_'

# This will contain just the .nc files
nasadem_file_list = None
                                   
temp_dir = os.path.join(tempfile.gettempdir(),'nasadem')
os.makedirs(temp_dir,exist_ok=True)

%matplotlib inline

Functions

In [27]:
class DownloadProgressBar():
    """
    https://stackoverflow.com/questions/37748105/how-to-use-progressbar-module-with-urlretrieve
    """
    
    def __init__(self):
        self.pbar = None

    def __call__(self, block_num, block_size, total_size):
        if not self.pbar:
            self.pbar = progressbar.ProgressBar(max_value=total_size)
            self.pbar.start()
            
        downloaded = block_num * block_size
        if downloaded < total_size:
            self.pbar.update(downloaded)
        else:
            self.pbar.finish()
            

def download_url(url, destination_filename=None, progress_updater=None, force_download=False):
    """
    Download a URL to a temporary file
    """
    
    # This is not intended to guarantee uniqueness, we just know it happens to guarantee
    # uniqueness for this application.
    if destination_filename is None:
        url_as_filename = url.replace('://', '_').replace('/', '_')    
        destination_filename = \
            os.path.join(temp_dir,url_as_filename)
    if (not force_download) and (os.path.isfile(destination_filename)):
        print('Bypassing download of already-downloaded file {}'.format(
            os.path.basename(url)))
        return destination_filename
    print('Downloading file {} to {}'.format(os.path.basename(url),
                                             destination_filename),end='')
    urllib.request.urlretrieve(url, destination_filename, progress_updater)  
    assert(os.path.isfile(destination_filename))
    nBytes = os.path.getsize(destination_filename)
    print('...done, {} bytes.'.format(nBytes))
    return destination_filename


def lat_lon_to_nasadem_tile(lat,lon):
    """
    Get the NASADEM file name for a specified latitude and longitude
    """
    
    # A tile name looks like:
    #
    # NASADEM_NUMNC_n00e016.nc
    #
    # The translation from lat/lon to that string is represented nicely at:
    #
    # https://dwtkns.com/srtm30m/

    # Force download of the file list
    get_nasadem_file_list()
        
    ns_token = 'n' if lat >=0 else 's'
    ew_token = 'e' if lon >=0 else 'w'
    
    lat_index = abs(math.floor(lat))
    lon_index = abs(math.floor(lon))
    
    lat_string = ns_token + '{:02d}'.format(lat_index)
    lon_string = ew_token + '{:03d}'.format(lon_index)
    
    filename =  nasadem_file_prefix + lat_string + lon_string + \
        nasadem_content_extension

    if filename not in nasadem_file_list:
        print('Lat/lon {},{} not available'.format(lat,lon))
        filename = None
    
    return filename


def get_nasadem_file_list():
    """
    Retrieve the full list of NASADEM tiles
    """
    
    global nasadem_file_list
    if nasadem_file_list is None:
        nasadem_file = download_url(nasadem_file_index_url)
        with open(nasadem_file) as f:
            nasadem_file_list = f.readlines()
            nasadem_file_list = [f.strip() for f in nasadem_file_list]
            nasadem_file_list = [f for f in nasadem_file_list if \
                                 f.endswith(nasadem_content_extension)]
    return nasadem_file_list

Download a NASADEM tile for a known lat/lon

In [28]:
# Interesting places for looking at SRTM data
everest = [27.9881,86.9250]
seattle = [47.6062,-122.3321]
grand_canyon = [36.101690, -112.107676]
mount_fuji = [35.3606, 138.7274]
mont_blanc = [45.832778, 6.865000]
invalid = [-15.1,41]

tile_of_interest = mount_fuji

tile_name = lat_lon_to_nasadem_tile(tile_of_interest[0],tile_of_interest[1])
url = nasadem_blob_root + tile_name
fn = download_url(url,progress_updater=DownloadProgressBar())
Bypassing download of already-downloaded file nasadem_file_list.txt
Bypassing download of already-downloaded file NASADEM_NC_n35e138.nc

Load and plot the tile

In [29]:
fh = Dataset(fn, mode='r')
heights = fh['NASADEM_HGT'][:]
lons = fh.variables['lon'][:]
lats = fh.variables['lat'][:]

min_height = np.min(heights)
max_height = np.max(heights)
height_units = fh.variables['NASADEM_HGT'].units

fh.close()

print('Height ranges from {} {} to {} {}'.format(min_height,height_units,
      max_height,height_units))

extent = [np.min(lons), np.max(lons), np.min(lats), np.max(lats)]
plt.imshow(heights,extent=extent)
plt.xlabel('Longitude')
plt.ylabel('Latitude')
cb = plt.colorbar()
cb.set_label('Height ({})'.format(height_units))
Height ranges from -18 meters to 3756 meters

Also plot on a basemap

In [30]:
# To plot on a basemap, we'll want to downsample the data substantially
ds_factor = 10

# Show a little space around each edge on the basemap (this is in lat/lon units)
expansion_distance = 0.75

lon_0 = lons.mean()
lat_0 = lats.mean()
lons_ds = lons[::ds_factor]
lats_ds = lats[::ds_factor]
heights_ds = heights[::ds_factor,::ds_factor,]

# Convert to a 2D grid for plotting
lon_plot, lat_plot = np.meshgrid(lons_ds, lats_ds)

plt.figure(num=None, figsize=(8, 8), dpi=100)

m = Basemap(projection='stere',resolution='l',
            lat_ts=lat_0,lat_0=lat_0,lon_0=lon_0,
            llcrnrlon=extent[0]-expansion_distance, 
            llcrnrlat=extent[2]-expansion_distance,
            urcrnrlon=extent[1]+expansion_distance,
            urcrnrlat=extent[3]+expansion_distance)

xi, yi = m(lon_plot, lat_plot)

cs = m.pcolor(xi,yi,np.squeeze(heights_ds))

# Add grid lines
m.drawparallels(np.arange(-80., 81., 10.), labels=[1,0,0,0], fontsize=10)
m.drawmeridians(np.arange(-180., 181., 10.), labels=[0,0,0,1], fontsize=10)

# Add coastlines and state/country borders

# drawcoastlines() fails when no coastlines are visible
try:
    m.drawcoastlines()
except:
    pass
m.drawstates()
m.drawcountries()

cbar = m.colorbar(cs, location='bottom', pad="10%")
cbar.set_label(height_units)
plt.title('SRTM height')
plt.show()

Clean up temporary files

In [18]:
shutil.rmtree(temp_dir)