Hoppa över navigering

Harmonized Landsat Sentinel-2

SatelliteImagery EarthObservation AIforEarth NASA ESA

Satellitbild från satelliterna Landsat-8 och Sentinel-2 för Nordamerika.

Harmonized Landsat Sentinel-2 (HLS) innehåller data från satelliterna Landsat-8 och Sentinel-2 som är justerade mot ett gemensamt panelsystem med en upplösning på 30 m, från 2013 fram till nutid för Landsat och från 2015 fram till nutid för Sentinel-2. HLS administreras av National Aeronautics and Space Administration (NASA).

Datamängden underhålls av Ag-Analytics®. Ag-Analytics® tillhandahåller också ett API som stöder AOI-polygoner, datumintervall samt andra alternativ. Det returnerar bearbetade bilder för enskilda MSI-band, NDVI (Normalized Difference Vegetation Index) och andra mått, samt molnfiltrerad mosaik.

Datamängden uppdateras varje vecka.

Lagringsresurser

Data lagras i blobbar i datacentret Östra USA 2, i följande blobcontainer:

https://hlssa.blob.core.windows.net/hls

I containern organiseras datan efter:

<folder>/HLS.<product>.T<tileid>.<daynum>.<version>_<subdataset>.tif

  • folder är L309 för Landsat, S309 för Sentinel-2
  • product är L30 för Landsat, S30 för Sentinel-2
  • tileid är en panelkod på fyra tecken från panelsystemet i Sentinel-2
  • daynum är ett 4-siffrigt årtal plus en 3-siffrig dag på året (från 001 till 365). 2019001 representerar exempelvis den 1 januari 2019
  • version är alltid v1.4
  • subdataset är en 1-indexerad sträng på två tecken som anger en deldatamängd (se nedan)

En mappning från lat/lon till panel-ID:n finns här. Anteckningsboken under “Data Access” visar hur tabellen används för att leta efter ett panel-ID baserat på lat/lon. Panel-ID:n kan också hittas med hjälp av Ag-Analytics®-API:et.

Data finns för följande primära paneler:

[‘10 U’,‘11 U’,‘12 U’,‘13 U’,‘14 U’,‘15 U’,‘16 U’,‘10 T’,‘11 T’,‘12 T’,‘13 T’,‘14 T’,‘15 T’,‘16 T’,‘17 T’,‘18 T’,‘19 T’,‘10 S’,‘11 S’,‘12 S’,‘13 S’,‘14 S’,‘15 S’,‘16 S’,‘17 S’,‘18 S’,‘12 R’,‘13 R’,‘14 R’,‘15 R’,‘16 R’,‘17 R’]

Banden är följande:

Bandnamn OLI-bandnummer MSI-bandnummer L30 subdatasetnumber S30 subdatasetnumber
Aerosol vid kusten 1 1 01 01
Blå 2 2 02 02
Grön 3 3 03 03
Röd 4 4 04 04
Red-edge 1 5 05
Red-edge 2 6 06
Red-edge 3 7 07
NIR bred 8 08
NIR smal 5 8A 05 09
SWIR 1 6 11 06 10
SWIR 2 7 12 07 11
Vattenånga 9 12
Fjädermoln 9 10 08 13
Termisk infraröd 1 10 09
Termisk infraröd 2 11 10
QA 11 14

Exempelvis finns filnamnet HLS.S30.T16TDL.2019206.v1.4_01.tif på https://hlssa.blob.core.windows.net/hls/S309/HLS.S30.T16TDL.2019206.v1.4_03.tif och visar Sentinel-2 (S30) HLS-data för panel 16TDL (primär panel 16T, underpanel DL) för datamängdband 03 (MSI-band 3, grön) för den 206:e dagen 2019.

Vi tillhandahåller också en skrivskyddad SAS-token (signatur för delad åtkomst) som ger åtkomst till HLS-data via exempelvis BlobFuse, vilket innebär att du kan montera blobcontainrar som enheter:

st=2019-08-07T14%3A54%3A43Z&se=2050-08-08T14%3A54%3A00Z&sp=rl&sv=2018-03-28&sr=c&sig=EYNJCexDl5yxb1TxNH%2FzILznc3TiAnJq%2FPvCumkuV5U%3D

Monteringsanvisningarna för Linux finns här.

HLS-data kan förbruka hundratals terabyte, så bearbetning i stor skala utförs bäst i Azures datacenter Östra USA 2 där bilderna lagras. Om du använder HLS-data i miljövetenskapsprogram kan du ansöka om AI for Earth Grant som kan vara till hjälp vid dina beräkningar.

Kontakt

Om du har frågor om den här datamängden är du välkommen att kontakta aiforearthdatasets@microsoft.com.

Meddelanden

MICROSOFT TILLHANDAHÅLLER AZURE OPEN DATASETS I BEFINTLIGT SKICK. MICROSOFT UTFÄRDAR INTE NÅGRA GARANTIER ELLER VILLKOR, UTTRYCKLIGA ELLER UNDERFÖRSTÅDDA, AVSEENDE ANVÄNDNINGEN AV DATAMÄNGDERNA. I DEN UTSTRÄCKNING DET ÄR TILLÅTET ENLIGT NATIONELL LAGSTIFTNING, FRISKRIVER MICROSOFT SIG FRÅN ALLT ANSVAR BETRÄFFANDE SKADOR OCH FÖRLUSTER, INKLUSIVE DIREKTA SKADOR, FÖLJDSKADOR, SÄRSKILDA SKADOR, INDIREKTA SKADOR, ELLER OFÖRUTSEDDA SKADOR FRÅN ANVÄNDNINGEN AV DATAMÄNGDERNA.

Datamängden tillhandahålls enligt de ursprungliga villkor som gällde när Microsoft tog emot källdatan. Datamängden kan innehålla data från Microsoft.

Access

Available inWhen to use
Azure Notebooks

Quickly explore the dataset with Jupyter notebooks hosted on Azure or your local machine.

Select your preferred service:

Azure Notebooks

Azure Notebooks

Package: Language: Python

Demo notebook for accessing HLS data on Azure

This notebook provides an example of accessing HLS (Harmonized Landsat Sentinel-2) data from blob storage on Azure, extracting image metadata using GDAL, and displaying an image using GDAL and rasterio.

HLS data are stored in the East US 2 data center, so this notebook will run more efficiently on the Azure compute located in East US 2. You don't want to download hundreds of terabytes to your laptop! If you are using HLS data for environmental science applications, consider applying for an AI for Earth grant to support your compute requirements.

HLS data on Azure are managed by Ag-Analytics. Ag-Analytics also provides an API which allows the caller to query to perform spatial queries over the HLS archive, as well as querying for additional data such as cloud cover and Normalized Difference Vegetation Index (NDVI). Ag-Analytics also provides an API to retrieve tile IDs matching spatial queries.

Imports and environment

In [2]:
# Standard-ish packages
import requests
import re
import numpy as np
import urllib
import io
import matplotlib.pyplot as plt
import pandas as pd

# Less standard, but all of the following are pip- or conda-installable
import rasterio

# pip install azure-storage-blob
from azure.storage.blob import ContainerClient

from osgeo import gdal,osr

# Storage locations are documented at http://aka.ms/ai4edata-hls
hls_container_name = 'hls'
hls_account_name = 'hlssa'
hls_account_url = 'https://' + hls_account_name + '.blob.core.windows.net/'
hls_blob_root = hls_account_url + hls_container_name

# This file is provided by NASA; it indicates the lat/lon extents of each
# hls tile.
#
# The file originally comes from:
#
# https://hls.gsfc.nasa.gov/wp-content/uploads/2016/10/S2_TilingSystem2-1.txt
#
# ...but as of 8/2019, there is a bug with the column names in the original file, so we
# access a copy with corrected column names.
hls_tile_extents_url = 'https://ai4edatasetspublicassets.blob.core.windows.net/assets/S2_TilingSystem2-1.txt?st=2019-08-23T03%3A25%3A57Z&se=2028-08-24T03%3A25%3A00Z&sp=rl&sv=2018-03-28&sr=b&sig=KHNZHIJuVG2KqwpnlsJ8truIT5saih8KrVj3f45ABKY%3D'

# Load this file into a table, where each row is:
#
# Tile ID, Xstart, Ystart, UZ, EPSG, MinLon, MaxLon, MinLon, MaxLon
print('Reading tile extents...')
s = requests.get(hls_tile_extents_url).content
hls_tile_extents = pd.read_csv(io.StringIO(s.decode('utf-8')),delimiter=r'\s+')
print('Read tile extents for {} tiles'.format(len(hls_tile_extents)))

# Read-only shared access signature (SAS) URL for the hls container
hls_sas_token = 'st=2019-08-07T14%3A54%3A43Z&se=2050-08-08T14%3A54%3A00Z&sp=rl&sv=2018-03-28&sr=c&sig=EYNJCexDl5yxb1TxNH%2FzILznc3TiAnJq%2FPvCumkuV5U%3D'

hls_container_client = ContainerClient(account_url=hls_account_url, 
                                         container_name=hls_container_name,
                                         credential=None)
                                

%matplotlib inline
Reading tile extents...
Read tile extents for 56686 tiles

Functions

In [3]:
def get_hls_tile(blob_url):
    """
    Given a URL pointing to an HLS image in blob storage, load that image via GDAL
    and return both data and metadata.
    """    
    
    formatted_gdal_bloburl='/{}/{}'.format('vsicurl',blob_url)
    
    tile_open = gdal.Open(formatted_gdal_bloburl)
    data = tile_open.GetRasterBand(1)
    ndv,xsize,ysize = data.GetNoDataValue(),tile_open.RasterXSize,tile_open.RasterYSize
    
    projection = osr.SpatialReference()
    projection.ImportFromWkt(tile_open.GetProjectionRef())
    
    datatype = data.DataType
    datatype = gdal.GetDataTypeName(datatype)  
    data_array = data.ReadAsArray()

    return ndv,xsize,ysize,projection,data_array


def list_available_tiles(prefix):
    """
    List all blobs in an Azure blob container matching a prefix.  
    
    We'll use this to query tiles by location and year.
    """
    
    files = []
    generator = hls_container_client.list_blobs(name_starts_with=prefix)
    for blob in generator:
        files.append(blob.name)
    return files

    
def lat_lon_to_hls_tile_id(lat,lon):
    """
    Get the hls tile ID for a given lat/lon coordinate pair
    """  
    
    found_matching_tile = False

    for i_row,row in hls_tile_extents.iterrows():
        found_matching_tile = lat >= row.MinLat and lat <= row.MaxLat \
        and lon >= row.MinLon and lon <= row.MaxLon
        if found_matching_tile:
            break
    
    if not found_matching_tile:
        return None
    else:
        return row.TilID

Find a tile for a given location and date

In [4]:
# Specify a location and year of interest
lat = 47.6101; lon = -122.2015 # Bellevue, WA

year = '2019'
daynum = '109'    # 1-indexed day-of-year
folder = 'S309'   # 'S309' for Sentinel, 'L309' for Landsat
product = 'S30'   # 'S30' for Sentinel, 'L30' for Landsat
year = '2019'

tile_id = lat_lon_to_hls_tile_id(lat,lon)
assert tile_id is not None, 'Invalid lat/lon'
prefix = folder + '/HLS.' + product + '.T' + tile_id + '.' + year

print('Finding tiles with prefix {}'.format(prefix))
matches = list_available_tiles(prefix)
assert len(matches) > 0, 'No matching tiles'

blob_name = matches[0]
print('Found {} matching tiles, using file {}'.format(len(matches),blob_name))
Finding tiles with prefix S309/HLS.S30.T10TET.2019
Found 1918 matching tiles, using file S309/HLS.S30.T10TET.2019001.v1.4_01.tif

...or build a tile path from components

In [5]:
lat = 47.6101; lon = -122.2015 # Bellevue, WA

year    = '2019'
daynum  = '001'   # 1-indexed day-of-year
folder  = 'S309'  # 'S309' for Sentinel, 'L309' for Landsat
product = 'S30'   # 'S30' for Sentinel, 'L30' for Landsat
band    = '01'
tile_id = '10TET' # See hls.gsfc.nasa.gov/wp-content/uploads/2016/10/S2_TilingSystem2-1.txt
version = 'v1.4'  # Currently always v1.4

blob_name = folder + '/HLS.' + product + '.T' + tile_id + '.' + year + daynum + '.' + version \
    + '_' + band + '.tif'

print('Using file {}'.format(blob_name))
Using file S309/HLS.S30.T10TET.2019001.v1.4_01.tif

Access one band of the selected image using GDAL's virtual file system (vsicurl)

In [6]:
gdal.SetConfigOption('GDAL_HTTP_UNSAFESSL', 'YES')
blob_url = hls_blob_root + '/' + blob_name
print('Reading tile from {}'.format(blob_url))
ndv,xsize,ysize,projection,data_array = get_hls_tile(blob_url)

print('No-data value: {}'.format(ndv))
print('\nSize: {},{}'.format(xsize,ysize))
print('\nProjection:\n{}'.format(projection))
Reading tile from https://hlssa.blob.core.windows.net/hls/S309/HLS.S30.T10TET.2019001.v1.4_01.tif
No-data value: -1000.0

Size: 3660,3660

Projection:
PROJCS["UTM Zone 10, Northern Hemisphere",
    GEOGCS["Unknown datum based upon the WGS 84 ellipsoid",
        DATUM["Not_specified_based_on_WGS_84_spheroid",
            SPHEROID["WGS 84",6378137,298.257223563,
                AUTHORITY["EPSG","7030"]]],
        PRIMEM["Greenwich",0],
        UNIT["degree",0.0174532925199433]],
    PROJECTION["Transverse_Mercator"],
    PARAMETER["latitude_of_origin",0],
    PARAMETER["central_meridian",-123],
    PARAMETER["scale_factor",0.9996],
    PARAMETER["false_easting",500000],
    PARAMETER["false_northing",0],
    UNIT["metre",1,
        AUTHORITY["EPSG","9001"]]]

Display a Sentinel-2 image using rasterio and vsicurl

In [7]:
# Bands 2, 3, and 4 are B, G, and R in Sentinel-2 HLS images

base_url = '/vsicurl/' + hls_blob_root + '/' + blob_name
band2_url = re.sub('_(\d+).tif','_02.tif',base_url)
band3_url = re.sub('_(\d+).tif','_03.tif',base_url)
band4_url = re.sub('_(\d+).tif','_04.tif',base_url)
print('Reading bands from:\n{}\n{}\n{}'.format(band2_url,band3_url,band4_url))

band2 = rasterio.open(band2_url)
band3 = rasterio.open(band3_url)
band4 = rasterio.open(band4_url)

norm_value = 2000
image_data = []
for band in [band4,band3,band2]:
    band_array = band.read(1)
    band_array = band_array / norm_value
    image_data.append(band_array)
    band.close()

rgb = np.dstack((image_data[0],image_data[1],image_data[2]))
np.clip(rgb,0,1,rgb)
plt.imshow(rgb)
Reading bands from:
/vsicurl/https://hlssa.blob.core.windows.net/hls/S309/HLS.S30.T10TET.2019001.v1.4_02.tif
/vsicurl/https://hlssa.blob.core.windows.net/hls/S309/HLS.S30.T10TET.2019001.v1.4_03.tif
/vsicurl/https://hlssa.blob.core.windows.net/hls/S309/HLS.S30.T10TET.2019001.v1.4_04.tif
Out[7]:
<matplotlib.image.AxesImage at 0x2249d8e6f48>