IoT-tekniker och IoT-protokoll

Kom igång med IoT. Den här guiden ger dig en stark grund i IoT-teknik och IoT-protokoll så att du kan göra rätt val för ditt projekt.

En guide till IoT-tekniker och IoT-protokoll

Sakernas Internet inbegriper inbäddade system, trådlösa sensornätverk, kontrollsystem och automatisering som möjliggör anslutna fabriker, intelligent återförsäljning, smarta hem och städer och kroppsnära teknik. Med IoT-tekniker kan du förändra din verksamhet i grunden med datadrivna insikter, optimerade operativa processer, nya verksamhetsområden och effektivare materialanvändning.

IoT-teknikerna fortsätter att expandera, med oräkneliga tjänstleverantörer, en mängd olika plattformar och miljontals nya enheter som utvecklas varje år. Allt detta innebär att utvecklare har många beslut att fatta innan man integrerar med IoT-ekosystemet. Den här guiden beskriver vanliga IoT-protokoll, energiöverväganden och anslutningskrav.

Ekosystemet för IoT-tekniken

Ekosystemet för IoT-tekniken består av följande lager: enheter, data, anslutningar och användare av tekniken.

Enhetslager

En kombination av sensorer, aktuatorer, maskinvara, programvara, anslutningar och gatewayer som tillsammans utgör en enhet som ansluter och interagerar med ett nätverk.

Datalager

Data som samlas in, bearbetas, skickas, lagras, analyseras, presenteras och används i affärssammanhang.

Affärslager

Affärsfunktionerna i IoT-teknik, inklusive hanteringen av fakturering och datamarknadsplatser.

Användarlager

De komponenter som gör att människor kan interagera med IoT-enheter.

IoT-teknikstacken, del 1:
IoT-enheter

IoT-enheter

Här är några exempel på vanliga termer relaterade till enheter i IoT-teknikstacken:

Inbäddade system

Omfattar både maskin- och programvara och hanterar en specifik funktion som är kopplad till ett större system. Inbäddade system baseras på mikroprocessorer eller mikrostyrenheter.

Intelligenta enheter

Dessa enheter har beräkningskapacitet och är ofta utrustade med en mikrostyrenhet.

Mikrostyrenhet (MCU)

Dessa små datorer är integrerade på mikrochip och innehåller processorer, RAM-minne och ROM. Även om de har alla element som behövs för att köra enkla uppgifter, är mikrostyrenheter mer begränsade än mikroprocessorer vad gäller kapacitet.

Mikroprocessorenhet (MPU)

Processorfunktionerna finns i en eller flera integrerade kretsar. Även om mikroprocessorer kräver kringutrustning för att utföra aktiviteter, minskar de bearbetningskostnaderna rejält eftersom de bara innehåller en processor.

Enheter som inte utför beräkningar

Dessa enheter ansluter och överför data, men kan inte utföra beräkningar.

Omvandlare

Fysiska enheter som omvandlar en form av energi till en annan. I relation till IoT-enheter handlar detta om de interna sensorer och aktuatorer som överför data när objekt kommunicerar med deras miljö.

  • Aktuatorer

    Vidtar fysiska åtgärder när kontrollcentret ger instruktioner, vanligtvis på grund av ändringar som identifierats av sensorer.

  • Sensorer

    Identifierar ändringar i miljön och generera elektriska signaler för kommunikation. Sensorer identifierar vanliga förändringar i miljön, t.ex. ändringar i temperatur, kemikalier och fysisk position.

IoT-teknikstacken, del 2:
IoT-protokoll och anslutningar

När du planerar ett IoT-projekt är det viktigt att fundera över hur enheten ska ansluta och kommunicera. Detta avgör vilka IoT-protokoll som krävs.

Anslutning av IoT-enheter

I IoT-teknikstacken ansluter enheter antingen via gatewayer eller inbyggda funktioner.

Vad är IoT-gatewayer?

Gatewayer ansluter IoT-enheter till molnet. Data som samlas in från IoT-enheter skickas genom en gateway, förbehandlas ”vid gränsen” och skickas sedan till molnet.

Användning av IoT-gatewayer förlänger batteritiden, ger kortare svarstider och minskar överföringsstorlekarna. En gateway gör också att du kan ansluta enheter utan direkt Internetåtkomst och ger ett extra säkerhetslager genom att skydda data i båda riktningarna.

Hur gör jag för att ansluta IoT-enheter till nätverket?

Vilken typ av anslutning du behöver beror på enheten, dess funktion och dess användare. Normalt är det avstånd som data måste färdas över – en kortare eller längre sträcka – det som avgör vilken typ av IoT-anslutning som behövs.

Typer av IoT-nätverk

Energisnåla nätverk med kort räckvidd

Dessa nätverk passar bra för hem, kontor och andra begränsade miljöer. De lämpar sig för små batterier – och i vissa fall batterilösa installationer – och är ofta billiga att använda.

Vanliga exempel är:

Bluetooth

Bluetooth är bra vid snabb dataöverföring och skickar både röst- och datasignaler upp till 10 meter.

Wi-Fi/802.11

Den låga kostnaden med Wi-Fi gör det till en standard i hem och på kontor. Men det kanske inte är det bästa valet för alla scenarier på grund av dess begränsade räckvidd och oavbrutna energiförbrukning.

Z-Wave

Ett mesh-nätverk för hushållsapparater för radiovågskommunikation med låg energiförbrukning. Z-Wave ger interoperabilitet i programlagret mellan olika hemautomatiseringssystem.

Zigbee

ZigBee är ett vanligt alternativ för hemautomatisering och medicinska enheter som passar bäst för personliga nätverk med små, energisnåla enheter med låg bandbredd i ett begränsat område.

LPWAN (Low-Power, Wide Area Network)

Möjliggör kommunikation över minst 500 meter, är mycket energisnåla och används för de flesta IoT-enheter. Till exempel ansluter LoRaWAN-nätverk (Long-Range Wide Area Network) mobila, säkra, dubbelriktade batteridrivna enheter.

Vanliga exempel är:

4G LTE IoT

Har hög kapacitet och korta svarstider, vilket gör dessa nätverk till ett bra val för IoT-scenarier som kräver information eller uppdateringar i realtid.

5G IoT

5G IoT-nätverk är inte tillgängliga än, men förväntas medföra nya innovationer inom IoT tack vare snabbare nedladdningshastigheter och anslutning till många fler enheter inom ett visst område.

Cat-0

Dessa LTE-baserade nätverk är alternativet med lägst kostnad. De lägger grunden för Cat-M, en teknik som kommer att ersätta 2G.

Cat-1

Den här standarden för mobilt IoT kommer på sikt att ersätta 3G. Cat-1-nätverk är enkla att konfigurera och är en bra lösning för program som kräver ett röst- eller webbläsargränssnitt.

LTE Cat-M1

Dessa nätverk är helt kompatibla med LTE-nätverk. De optimerar kostnaden och kapaciteten i andra generationens LTE-kretsar som utformats specifikt för IoT-program.

Narrowband

Den här standarden för trådlös överföring används med en delmängd av LTE-standarden. Den fokuserar på inomhustäckning och ger låg kostnad och lång batteritid.

NB-IoT/Cat-M2

Använder DSSS-modulering (Direct Sequence Spread Spectrum) för att skicka data direkt till servern, vilket gör att ingen gateway behövs. NB-IoT-nätverk kostar mer att upprätta, men är billigare att köra eftersom ingen gateway behövs.

Sigfox

Den här ledande globala IoT-nätverksprovidern erbjuder trådlösa nätverk för anslutning av energisnåla objekt som skickar kontinuerliga data.

IoT-protokoll: Så här kommunicerar IoT-enheter med nätverket

IoT-enheter kommunicerar med hjälp av IoT-protokoll. IP (Internet Protocol) är en uppsättning regler som avgör hur data skickas till Internet. IoT-protokoll ser till att information från en enhet eller sensor kan läsas och tolkas av en annan. Med tanke på de många olika IoT-enheter som finns är det viktigt att rätt protokoll används i rätt sammanhang.

Vilket IoT-protokoll är rätt för mig?

Vilken typ av IoT-protokoll du använder beror på vilket lager i systemarkitekturen som dina data skickas i. OSI-modellen (Open Systems Interconnection) ger en karta över de olika lager som skickar och tar emot data. Varje protokoll i IoT-systemarkitekturen möjliggör ”enhet till enhet”-, ”enhet till gateway”-, ”gateway till datacenter”- eller ”gateway till moln”-kommunikation, samt kommunikation mellan datacenter.

Programlager

Programlagret fungerar som gränssnittet mellan användaren och enheten.

Advanced Message Queuing Protocol (AMQP)

Ett programvarulager som skapar interoperabilitet mellan mellanprogram för meddelandehantering. Det gör att en mängd olika system och program kan samarbeta, vilket ger standardiserad meddelandehantering i mycket hög skala.

CoAP (Constrained Application Protocol)

Ett protokoll för begränsad bandbredd och begränsade nätverk som gör att enheter med begränsad kapacitet kan delta i kommunikation mellan datorer. CoAP är också ett dokumentöverföringsprotokoll som körs via UDP (User Datagram Protocol).

DDS (Data Distribution Service)

Ett mångsidigt peer-to-peer-kommunikationsprogram som gör allt från att köra små enheter till att ansluta till nätverk med höga prestanda. DDS effektiviserar distributionen, ökar tillförlitligheten och minskar komplexiteten.

MQTT (Message Queue Telemetry Transport)

Ett meddelandeprotokoll som utformats för enkel kommunikation mellan datorer och som främst används för anslutningar med låg bandbredd till fjärranslutna platser. MQTT bygger på en ”utgivare-prenumerant”-modell och är idealiskt för små enheter som kräver effektiv bandbredd och batterianvändning.

Transportlager

Transportlagret möjliggör och skyddar kommunikationen av data när de skickas mellan lager.

TCP (Transmission Control Protocol)

Det dominerande protokollet för de flesta Internetanslutningar. Det hanterar kommunikation mellan värdar och delar upp stora mängder data i enskilda paket och skickar om och monterar om paket om det behövs.

UDP (User Datagram Protocol)

Ett kommunikationsprotokoll som möjliggör kommunikation mellan processer och som körs ovanpå IP. UDP har högre dataöverföringshastighet än TCP och passar bäst för program som kräver förlustfri överföring av data.

Nätverkslager

Nätverkslagret gör att enskilda enheter kan kommunicera med routern.

6LoWPAN

En energisnål version av IPv6 som minskar överföringstiderna.

IPv6

Den här nya uppdateringen av IP dirigerar trafik över Internet och identifierar och söker efter enheter i nätverket.

Datalänklager

Datalagret överför data i systemarkitekturen och identifierar och korrigerar fel som påträffas i det fysiska lagret.

IEEE 802.15.4

En överföringsstandard för energisnål trådlös anslutning. Den används med ZigBee, 6LoWPAN och andra standarder för att skapa trådlösa inbäddade nätverk.

LPWAN

Den här typen av nätverk möjliggör kommunikation över minst 500 meter. LoRaWAN är ett exempel på LPWAN som är optimerat för låg energiförbrukning.

Fysiskt lager

Det fysiska lagret upprättar en kommunikationskanal, som gör att enheter kan ansluta i en viss miljö.

BLE (Bluetooth Low Energy)

Minskar energiförbrukningen och kostnaderna dramatiskt och har ungefär samma räckvidd som klassiska Bluetooth. BLE fungerar internt i mobila operativsystem och har snabbt blivit en favorit inom konsumentelektronik tack vare den låga kostnaden och långa batteritiden.

Ethernet

Den här trådbundna anslutningen är ett billigare alternativ som ger snabb dataanslutning och korta svarstider.

LTE (Long-Term Evolution)

En standard för trådlös bredbandskommunikation för mobila enheter och dataterminaler. LTE ökar kapaciteten och hastigheten i trådlösa nätverk och stöder multicast- och broadcast-strömmar.

NFC (Near Field Communication)

En uppsättning kommunikationsprotokoll som använder elektromagnetiska fält så att två enheter kan kommunicera när de är placerade inom fyra centimeter från varandra. NFC-aktiverade enheter fungerar som ID-nyckelkort och används ofta för kontaktlösa mobilbetalningar, biljetter och smartkort.

RFID (Radio Frequency Identification)

Använder elektromagnetiska fält för att spåra icke strömförande elektroniska taggar. Kompatibel maskinvara levererar ström och kommunicerar med taggarna genom att läsa informationen på dem för identifiering och autentisering.

Wi-Fi/802.11

En standard i hem och på kontor. Även om det är ett billigt alternativ kanske det inte passar alla scenarier på grund av dess begränsade räckvidd och oavbrutna energiförbrukning.

IoT-teknikstacken, del 3:
IoT-plattformar

Med IoT-plattformar har du en enda tjänst som hanterar din distribution, dina enheter och dina data, så att du enkelt kan skapa och lansera dina IoT-projekt. IoT-plattformar hanterar maskinvaru- och programvaruprotokoll, erbjuder säkerhet och autentisering och tillhandahåller användargränssnitt.

Den exakta definitionen av en IoT-plattform varierar eftersom fler än 400 tjänstleverantörer erbjuder funktioner inom allt från program- och maskinvara till SDK:er och API:er. Men de allra flesta IoT-plattformarna inkluderar:

  • En IoT-molngateway
  • Autentisering, enhetshantering och API:er
  • Molninfrastruktur
  • Integrationer med tredjepartsappar

Hanterade tjänster

Med IoT-hanterade tjänster kan företag proaktivt hantera och underhålla sina IoT-ekosystem. Det finns en mängd olika IoT-hanterade tjänster som kan effektivisera och underlätta utvecklingen, distributionen, hanteringen och övervakningen av ditt IoT-projekt.

IoT i förhållande till nuvarande tekniker

Virtuell verklighet och IoT

När de används tillsammans kan virtuell verklighet och IoT visuellt kontextualisera komplexa system och fatta beslut i realtid. Till exempel skapar förhöjd verklighet (även kallat mixad verklighet) ett visuellt överlägg av insamlade data och har många praktiska användningsområden som är kopplade till IoT. Kombinationen av virtuell verklighet och IoT har gett upphov till tekniska framsteg inom hälsovård, fältservice, transport, tillverkning och andra branscher.

Kvantberäkning och IoT

Den stora mängden data som genereras av IoT lämpar sig naturligt för kvantberäkning och dess enorma databearbetningskapacitet. Kvantkryptografi medför dessutom ytterligare en säkerhetsnivå, som är nödvändig men som för närvarande hindras av den låga beräkningskraften hos de flesta IoT-enheter.

Blockkedja och IoT

För närvarande finns det inget sätt att kontrollera att data från IoT inte har manipulerats innan de säljs eller delas. Blockkedjan och IoT arbetar tillsammans för att dela upp datasilor och skapa förtroende så att data kan verifieras, spåras och bli tillförlitliga.

Öppen källkod och IoT

Tekniker med öppen källkod påskyndar IoT och gör det möjligt för utvecklare att använda de verktyg som de föredrar med program för IoT-tekniker.

Serverlöst och IoT

Med den varierade trafiken i IoT-projekt är serverlös datahantering ett kostnadseffektivt sätt att skala dynamiskt – utan infrastrukturhantering.

Kubernetes och IoT

Med en distributionsmodell utan driftavbrott ser Kubernetes till att IoT-projekt hålls uppdaterade i realtid utan att användarna påverkas. Kubernetes skalas enkelt och effektivt med hjälp av molnresurser, vilket ger en gemensam plattform för distribution till gränsen.

AI och IoT

IoT-system samlar in enorma mängder data som ofta behövs för att använda AI eller maskininlärning för att sortera och analysera dessa data så att du kan identifiera mönster och vidta åtgärder baserat på de insikter du får. AI kan till exempel analysera data som samlas in från fabriksutrustning och förutsäga behovet av underhåll, vilket kan minska kostnaderna och avbrottstiden vid oväntade haverier.

IoT-stordata och analys

IoT-tekniker producerar sådana enorma mängder data att det krävs särskilda processer och verktyg för att omvandla data till användbara insikter.

Vanliga tillämpningsområden för IoT-teknik:

Förebyggande underhåll

IoT-maskininlärningsmodeller som utformats och tränats att identifiera signaler i historiska data kan användas för att identifiera samma trender i aktuella data. Detta gör det enkelt för användarna att förutse kommande serviceförfrågningar och beställa reservdelar i god tid så att de alltid är tillgängliga när de behövs.

Beslut i realtid

Effektiva IoT-analysarkitekturer med beräkning i realtid skalas för höga datamängder och korta svarstider. Det finns en mängd olika IoT-analystjänster, med komponenter som levererar rapportering i realtid från slutpunkt till slutpunkt, inklusive:

  • Lagring av stora mängder data i format som analysverktyg kan köra frågor mot.
  • Bearbetning av stora mängder dataströmmar för att filtrera och samla data innan en analys körs.
  • Analyser med korta svarstider med hjälp av verktyg för realtidsanalys som rapporterar och visualiserar data.
  • Datahantering i realtid med hjälp av meddelandekoordinatorer.

Vanliga utmaningar som IoT-tekniken medför:

Datalagring

Stor datainsamling leder till stora datalagringsbehov. Flera datalagringstjänster är tillgängliga med olika funktioner såsom organisationsstrukturer, autentiseringsprotokoll och storleksgränser.

Databearbetning

Den enorma mängden data som samlas in via IoT innebär utmatningar när det gäller att rensa, bearbeta och tolka data i hög hastighet. Gränsberäkning är ett sätt att hantera dessa utmaningar genom att flytta merparten av databearbetningen från ett centraliserat system till nätverksgränsen, närmare de enheter som behöver data. Decentraliserad databearbetning medför dock nya utmaningar, t.ex. i fråga om gränsenheternas tillförlitlighet och skalbarhet och säkerheten hos data som överförs.

IoT – säkerhet, skydd och sekretess

Säkerheten och integriteten med IoT är viktiga aspekter att ha i åtanke i alla IoT-projekt. Även om IoT-teknik kan omvandla dina affärsaktiviteter kan IoT-enheter utgöra hot om de inte är skyddade på rätt sätt. Cyberattacker kan kompromettera data, göra utrustning obrukbar och orsaka skada.

Stark IoT-cybersäkerhet kräver mer än de vanliga sekretessåtgärderna och inbegriper även hotmodellering. Att förstå på vilka olika sätt angripare kan kompromettera systemet är det första steget mot att förhindra attacker.

Läs mer om IoT-säkerhet

Resurser för att komma igång

IoT in the Real World: Berättelser från tillverkning

Lär dig hur företagsledare använder IoT för att få kontroll över data, enheter och program. Lär dig vad som krävs för att maximera nyttan av Sakernas Internet (IoT) och hur du kommer igång med din IoT-lösning.

Läs e-boken

Skapa IoT-lösningar med Azure: En guide för utvecklare

Få en översikt över tjänsterna och viktiga krav för IoT-lösningar, och få stegvis hjälp med att avancera och snabbt utveckla fungerande lösningar.

Titta närmare på guiden

Din IoT-verksamhet behöver rätt affärsmodell

Omforma din aktuella IoT-kompatibla affärsmodell eller hitta en ny modell som ger bättre stöd för ditt sätt att interagera med kunder. Utforska flera strategier baserat på prissättningskraft och återkommande intäkter.

Läs e-boken

Blogg om Sakernas Internet

Håll dig uppdaterad med de senaste Microsoft IoT-nyheterna, produkt- och funktionsdemonstrationer, kund- och partnerpresentationer, branschföreläsningar och tekniska djupdykningar.

Titta på det senaste avsnittet

Arbeta med en betrodd IoT-ledare

Kontakta oss