Пропустить навигацию

US Producer Price Index - Industry

labor statistics ppi industry

Индекс цен производителей (PPI) — это показатель среднего изменения отпускных цен, выплаченных отечественным производителям за их продукцию, с течением времени. Цены, учитываемые при расчете PPI, определяются по первой коммерческой транзакции для соответствующих продуктов и услуг.

Значения из ряда актуальных индексов цен производителей отражают изменение цен на чистую продукцию производителей, упорядоченных согласно североамериканской системе классификации отраслей экономики (NAICS). Набор данных PC совместим с широким ассортиментом экономических временных рядов на основе NAICS, включая данные о продуктивности, производстве, занятости, ставках и доходах.

Система PPI включает продукцию всех отраслей в секторах экономики США, выпускающих товары (горнодобывающей отрасли, производства, сельского хозяйства и лесоводства), а также природный газ, электроэнергию, сооружения и товары, конкурирующие с продукцией промышленных секторов, например отходы и бракованные материалы. Кроме того, с января 2011 года программа PPI охватывает более трех четвертей продукции в сфере обслуживания. Опубликованы данные для отдельных отраслей из следующих секторов: оптовой и розничной торговли; транспортировки и складирования; информации; финансов и страхования; посредничества, аренды и лизинга в сфере недвижимости; профессиональных, научных и технических услуг; служб администрирования, поддержки и утилизации отходов; здравоохранения и социального обеспечения; жилищного строительства.

README -файл с подробными сведениями об этом наборе данных доступен в его исходном расположении. Дополнительные сведения доступны на странице часто задаваемых вопросов.

Этот набор данных собран из данных об индексах цен производителей, опубликованных Бюро статистики труда США. Просмотрите Ссылки и информацию об авторских правах и Важные уведомления о веб-сайте, чтобы получить сведения об условиях, связанных с использованием этого набора данных.

Расположение хранилища

Этот набор данных хранится в регионе Azure “Восточная часть США”. Для обеспечения приближенности рекомендуется выделять вычислительные ресурсы в регионе “Восточная часть США”.

Связанные наборы данных

Уведомления

КОРПОРАЦИЯ МАЙКРОСОФТ ПРЕДОСТАВЛЯЕТ ОТКРЫТЫЕ НАБОРЫ ДАННЫХ AZURE НА УСЛОВИЯХ “КАК ЕСТЬ”. КОРПОРАЦИЯ МАЙКРОСОФТ НЕ ПРЕДОСТАВЛЯЕТ НИКАКИХ ГАРАНТИЙ (ЯВНЫХ ИЛИ ПОДРАЗУМЕВАЕМЫХ) И НЕ ОБЕСПЕЧИВАЕТ НИКАКИХ УСЛОВИЙ В ОТНОШЕНИИ ИСПОЛЬЗОВАНИЯ ВАМИ ЭТИХ НАБОРОВ ДАННЫХ. В РАМКАХ, ДОПУСКАЕМЫХ МЕСТНЫМ ЗАКОНОДАТЕЛЬСТВОМ, КОРПОРАЦИЯ МАЙКРОСОФТ ОТКАЗЫВАЕТСЯ ОТ ОТВЕТСТВЕННОСТИ ЗА УЩЕРБ И УБЫТКИ (В ТОМ ЧИСЛЕ ПРЯМЫЕ, КОСВЕННЫЕ, СПЕЦИАЛЬНЫЕ, ОПОСРЕДОВАННЫЕ, СЛУЧАЙНЫЕ И ШТРАФНЫЕ), ПОНЕСЕННЫЕ В РЕЗУЛЬТАТЕ ИСПОЛЬЗОВАНИЯ ВАМИ ЭТИХ НАБОРОВ ДАННЫХ.

Этот набор данных предоставляется на тех же условиях, на которых корпорация Майкрософт получила исходные данные. Этот набор может включать данные, полученные от корпорации Майкрософт.

Access

Available inWhen to use
Azure Notebooks

Quickly explore the dataset with Jupyter notebooks hosted on Azure or your local machine.

Azure Databricks

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Azure Synapse

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Preview

product_code industry_code series_id year period value footnote_codes seasonal series_title industry_name product_name
2123240 212324 PCU2123242123240 1998 M01 117 nan U PPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjusted Kaolin and ball clay mining Kaolin and ball clay
2123240 212324 PCU2123242123240 1998 M02 116.9 nan U PPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjusted Kaolin and ball clay mining Kaolin and ball clay
2123240 212324 PCU2123242123240 1998 M03 116.3 nan U PPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjusted Kaolin and ball clay mining Kaolin and ball clay
2123240 212324 PCU2123242123240 1998 M04 116 nan U PPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjusted Kaolin and ball clay mining Kaolin and ball clay
2123240 212324 PCU2123242123240 1998 M05 116.2 nan U PPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjusted Kaolin and ball clay mining Kaolin and ball clay
2123240 212324 PCU2123242123240 1998 M06 116.3 nan U PPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjusted Kaolin and ball clay mining Kaolin and ball clay
2123240 212324 PCU2123242123240 1998 M07 116.6 nan U PPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjusted Kaolin and ball clay mining Kaolin and ball clay
2123240 212324 PCU2123242123240 1998 M08 116.3 nan U PPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjusted Kaolin and ball clay mining Kaolin and ball clay
2123240 212324 PCU2123242123240 1998 M09 116.2 nan U PPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjusted Kaolin and ball clay mining Kaolin and ball clay
2123240 212324 PCU2123242123240 1998 M10 115.9 nan U PPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjusted Kaolin and ball clay mining Kaolin and ball clay
Name Data type Unique Values (sample) Description
footnote_codes string 3 nan
P

Определяет сноски к рядам данных. Принимает преимущественно значение NULL. Перейдите на страницу https://download.bls.gov/pub/time.series/pc/pc.footnote.

industry_code string 1,064 221122
325412

Код отрасли, используемый в NAICS. Перейдите на страницу https://download.bls.gov/pub/time.series/pc/pc.industry, чтобы просмотреть коды и названия.

industry_name string 842 Electric power distribution
Pharmaceutical preparation manufacturing

Имя, соответствующее коду отрасли. Перейдите на страницу https://download.bls.gov/pub/time.series/pc/pc.industry, чтобы просмотреть коды и названия.

period string 13 M06
M07

Определяет период наблюдения данных. Перейдите на страницу https://download.bls.gov/pub/time.series/pc/pc.period, чтобы просмотреть весь список.

product_code string 4,822 335129
311514P

Код, определяющий продукт, к которому относятся наблюдаемые данные. Перейдите на страницу https://download.bls.gov/pub/time.series/pc/pc.product, чтобы отобразить промышленные коды, коды продуктов и названия продуктов.

product_name string 3,313 Primary products
Secondary products

Название вида продукции, к которому относятся данные наблюдения. Перейдите на страницу https://download.bls.gov/pub/time.series/pc/pc.product, чтобы отобразить промышленные коды, коды продуктов и названия продуктов.

seasonal string 1 U

Код, указывающий, корректируются ли данные в зависимости от сезона. S=корректируются; U=не корректируются

series_id string 4,822 PCU22121022121012
PCU221122221122439

Код, указывающий на определенные временные ряды. Временной ряд — это набор данных, наблюдаемых в течение длительного периода времени через регулярные интервалы. Для получения дополнительных сведений о серии, таких как код, название, год начала и окончания и т. д., перейдите на страницу https://download.bls.gov/pub/time.series/pc/pc.series.

series_title string 4,588 PPI industry data for Electric power distribution-East North Central, not seasonally adjusted
PPI industry data for Electric power distribution-Mountain, not seasonally adjusted
value float 7,658 100.0
100.4000015258789

Индекс цен на вид продукции.

year int 22 2015
2017

Определяет год наблюдения.

Select your preferred service:

Azure Notebooks

Azure Databricks

Azure Synapse

Azure Notebooks

Package: Language: Python Python
In [1]:
# This is a package in preview.
from azureml.opendatasets import UsLaborPPIIndustry

labor = UsLaborPPIIndustry()
labor_df = labor.to_pandas_dataframe()
ActivityStarted, to_pandas_dataframe
ActivityStarted, to_pandas_dataframe_in_worker
Looking for parquet files...
Reading them into Pandas dataframe...
Reading ppi_industry/part-00000-tid-1761562550540733469-da319923-1af6-4884-a5f4-16397508d15f-4596-1-c000.snappy.parquet under container laborstatisticscontainer
Done.
ActivityCompleted: Activity=to_pandas_dataframe_in_worker, HowEnded=Success, Duration=7978.44 [ms]
ActivityCompleted: Activity=to_pandas_dataframe, HowEnded=Success, Duration=8014.64 [ms]
In [2]:
labor_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 948634 entries, 0 to 948633
Data columns (total 11 columns):
product_code      948634 non-null object
industry_code     948634 non-null object
series_id         948634 non-null object
year              948634 non-null int32
period            948634 non-null object
value             948634 non-null float32
footnote_codes    948634 non-null object
seasonal          948634 non-null object
series_title      948634 non-null object
industry_name     948634 non-null object
product_name      948634 non-null object
dtypes: float32(1), int32(1), object(9)
memory usage: 72.4+ MB
In [1]:
# Pip install packages
import os, sys

!{sys.executable} -m pip install azure-storage-blob
!{sys.executable} -m pip install pyarrow
!{sys.executable} -m pip install pandas
In [2]:
# Azure storage access info
azure_storage_account_name = "azureopendatastorage"
azure_storage_sas_token = r""
container_name = "laborstatisticscontainer"
folder_name = "ppi_industry/"
In [3]:
from azure.storage.blob import BlockBlobServicefrom azure.storage.blob import BlobServiceClient, BlobClient, ContainerClient

if azure_storage_account_name is None or azure_storage_sas_token is None:
    raise Exception(
        "Provide your specific name and key for your Azure Storage account--see the Prerequisites section earlier.")

print('Looking for the first parquet under the folder ' +
      folder_name + ' in container "' + container_name + '"...')
container_url = f"https://{azure_storage_account_name}.blob.core.windows.net/"
blob_service_client = BlobServiceClient(
    container_url, azure_storage_sas_token if azure_storage_sas_token else None)

container_client = blob_service_client.get_container_client(container_name)
blobs = container_client.list_blobs(folder_name)
sorted_blobs = sorted(list(blobs), key=lambda e: e.name, reverse=True)
targetBlobName = ''
for blob in sorted_blobs:
    if blob.name.startswith(folder_name) and blob.name.endswith('.parquet'):
        targetBlobName = blob.name
        break

print('Target blob to download: ' + targetBlobName)
_, filename = os.path.split(targetBlobName)
blob_client = container_client.get_blob_client(targetBlobName)
with open(filename, 'wb') as local_file:
    blob_client.download_blob().download_to_stream(local_file)
In [4]:
# Read the parquet file into Pandas data frame
import pandas as pd

print('Reading the parquet file into Pandas data frame')
df = pd.read_parquet(filename)
In [5]:
# you can add your filter at below
print('Loaded as a Pandas data frame: ')
df
In [6]:
 

Azure Databricks

Package: Language: Python Python
In [1]:
# This is a package in preview.
from azureml.opendatasets import UsLaborPPIIndustry

labor = UsLaborPPIIndustry()
labor_df = labor.to_spark_dataframe()
ActivityStarted, to_spark_dataframe ActivityStarted, to_spark_dataframe_in_worker ActivityCompleted: Activity=to_spark_dataframe_in_worker, HowEnded=Success, Duration=2665.84 [ms] ActivityCompleted: Activity=to_spark_dataframe, HowEnded=Success, Duration=2668.22 [ms]
In [2]:
display(labor_df.limit(5))
product_codeindustry_codeseries_idyearperiodvaluefootnote_codesseasonalseries_titleindustry_nameproduct_name
2123240212324PCU2123242123240 1998M01117.0nanUPPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjustedKaolin and ball clay miningKaolin and ball clay
2123240212324PCU2123242123240 1998M02116.9nanUPPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjustedKaolin and ball clay miningKaolin and ball clay
2123240212324PCU2123242123240 1998M03116.3nanUPPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjustedKaolin and ball clay miningKaolin and ball clay
2123240212324PCU2123242123240 1998M04116.0nanUPPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjustedKaolin and ball clay miningKaolin and ball clay
2123240212324PCU2123242123240 1998M05116.2nanUPPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjustedKaolin and ball clay miningKaolin and ball clay
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "laborstatisticscontainer"
blob_relative_path = "ppi_industry/"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))

Azure Synapse

Package: Language: Python
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "laborstatisticscontainer"
blob_relative_path = "ppi_industry/"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))