Пропустить навигацию

US Local Area Unemployment Statistics

labor statistics local area unemployment

В рамках программы переписи Local Area Unemployment Statistics (LAUS) предоставляются данные о трудоустройстве, безработице и занятости населения по регионам, округам, штатам, крупным городам с пригородами и многим городам США.

README-файл с подробными сведениями об этом наборе данных доступен в его исходном расположении.

Источник этого набора данных — данные Local Area Unemployment Statistics, опубликованные Бюро трудовой статистики (BLS) США. Просмотрите Ссылки и информацию об авторских правах и Важные уведомления о веб-сайте, чтобы получить сведения об условиях, связанных с использованием этого набора данных.

Место хранения

Этот набор данных хранится в регионе Azure “Восточная часть США”. Для обеспечения приближенности рекомендуется выделять вычислительные ресурсы в регионе “Восточная часть США”.

Связанные наборы данных

Объявления

КОРПОРАЦИЯ МАЙКРОСОФТ ПРЕДОСТАВЛЯЕТ ОТКРЫТЫЕ НАБОРЫ ДАННЫХ AZURE НА УСЛОВИЯХ “КАК ЕСТЬ”. КОРПОРАЦИЯ МАЙКРОСОФТ НЕ ПРЕДОСТАВЛЯЕТ НИКАКИХ ГАРАНТИЙ (ЯВНЫХ ИЛИ ПОДРАЗУМЕВАЕМЫХ) И НЕ ОБЕСПЕЧИВАЕТ НИКАКИХ УСЛОВИЙ В ОТНОШЕНИИ ИСПОЛЬЗОВАНИЯ ВАМИ ЭТИХ НАБОРОВ ДАННЫХ. В РАМКАХ, ДОПУСКАЕМЫХ МЕСТНЫМ ЗАКОНОДАТЕЛЬСТВОМ, КОРПОРАЦИЯ МАЙКРОСОФТ ОТКАЗЫВАЕТСЯ ОТ ОТВЕТСТВЕННОСТИ ЗА УЩЕРБ И УБЫТКИ (В ТОМ ЧИСЛЕ ПРЯМЫЕ, КОСВЕННЫЕ, СПЕЦИАЛЬНЫЕ, ОПОСРЕДОВАННЫЕ, СЛУЧАЙНЫЕ И ШТРАФНЫЕ), ПОНЕСЕННЫЕ В РЕЗУЛЬТАТЕ ИСПОЛЬЗОВАНИЯ ВАМИ ЭТИХ НАБОРОВ ДАННЫХ.

Этот набор данных предоставляется на тех же условиях, на которых корпорация Майкрософт получила исходные данные. Этот набор может включать данные, полученные от корпорации Майкрософт.

Access

Available inWhen to use
Azure Notebooks

Quickly explore the dataset with Jupyter notebooks hosted on Azure or your local machine.

Azure Databricks

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Azure Synapse

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Preview

area_code area_type_code srd_code measure_code series_id year period value footnote_codes seasonal series_title measure_text srd_text areatype_text area_text
CA3653200000000 E 36 3 LAUCA365320000000003 2000 M01 4.7 nan U Unemployment Rate: Syracuse-Auburn, NY Combined Statistical Area (U) unemployment rate New York Combined areas Syracuse-Auburn, NY Combined Statistical Area
CA3653200000000 E 36 3 LAUCA365320000000003 2000 M02 4.7 nan U Unemployment Rate: Syracuse-Auburn, NY Combined Statistical Area (U) unemployment rate New York Combined areas Syracuse-Auburn, NY Combined Statistical Area
CA3653200000000 E 36 3 LAUCA365320000000003 2000 M03 4.2 nan U Unemployment Rate: Syracuse-Auburn, NY Combined Statistical Area (U) unemployment rate New York Combined areas Syracuse-Auburn, NY Combined Statistical Area
CA3653200000000 E 36 3 LAUCA365320000000003 2000 M04 3.6 nan U Unemployment Rate: Syracuse-Auburn, NY Combined Statistical Area (U) unemployment rate New York Combined areas Syracuse-Auburn, NY Combined Statistical Area
CA3653200000000 E 36 3 LAUCA365320000000003 2000 M05 3.6 nan U Unemployment Rate: Syracuse-Auburn, NY Combined Statistical Area (U) unemployment rate New York Combined areas Syracuse-Auburn, NY Combined Statistical Area
CA3653200000000 E 36 3 LAUCA365320000000003 2000 M06 3.6 nan U Unemployment Rate: Syracuse-Auburn, NY Combined Statistical Area (U) unemployment rate New York Combined areas Syracuse-Auburn, NY Combined Statistical Area
CA3653200000000 E 36 3 LAUCA365320000000003 2000 M07 3.6 nan U Unemployment Rate: Syracuse-Auburn, NY Combined Statistical Area (U) unemployment rate New York Combined areas Syracuse-Auburn, NY Combined Statistical Area
CA3653200000000 E 36 3 LAUCA365320000000003 2000 M08 3.5 nan U Unemployment Rate: Syracuse-Auburn, NY Combined Statistical Area (U) unemployment rate New York Combined areas Syracuse-Auburn, NY Combined Statistical Area
CA3653200000000 E 36 3 LAUCA365320000000003 2000 M09 3.5 nan U Unemployment Rate: Syracuse-Auburn, NY Combined Statistical Area (U) unemployment rate New York Combined areas Syracuse-Auburn, NY Combined Statistical Area
CA3653200000000 E 36 3 LAUCA365320000000003 2000 M10 3.3 nan U Unemployment Rate: Syracuse-Auburn, NY Combined Statistical Area (U) unemployment rate New York Combined areas Syracuse-Auburn, NY Combined Statistical Area
Name Data type Unique Values (sample) Description
area_code string 8,290 ST0500000000000
RD8800000000000

Код, который идентифицирует географическую область. См. раздел https://download.bls.gov/pub/time.series/la/la.area.

area_text string 8,238 District of Columbia
Missouri

Название географической области. См. раздел https://download.bls.gov/pub/time.series/la/la.area

area_type_code string 14 F
G

Уникальный код, обозначающий тип области. См. раздел https://download.bls.gov/pub/time.series/la/la.area_type

areatype_text string 14 Counties and equivalents
Cities and towns above 25,000 population

Имя типа области.

footnote_codes string 5 nan
P
measure_code string 4 4
3

Код, который идентифицирует измеряемый элемент. 03: доля безработных 04: незанятость, 05: занятость, 06: занятое население. См. раздел https://download.bls.gov/pub/time.series/la/la.measure.

measure_text string 4 unemployment rate
unemployment

Имя измеряемого элемента. См. раздел https://download.bls.gov/pub/time.series/la/la.measure

period string 13 M07
M05

Указывает период (обычно месяц). См. раздел https://download.bls.gov/pub/time.series/la/la.period

seasonal string 2 U
S
series_id string 33,476 LASST210000000000004
LASST040000000000006

Код, который идентифицирует ряд данных. Полный список серий см. в https://download.bls.gov/pub/time.series/la/la.series.

series_title string 33,268 Unemployment Rate: Virginia Beach city, VA (U)
Employment: Fredericksburg city, VA (U)

Заголовок, который идентифицирует ряд данных. Полный список серий см. в https://download.bls.gov/pub/time.series/la/la.series.

srd_code string 53 48
23

Код штата, региона или отделения.

srd_text string 53 Texas
Maine
value float 600,099 4.0
5.0

Значение для определенной меры.

year int 44 2008
2009

Select your preferred service:

Azure Notebooks

Azure Databricks

Azure Synapse

Azure Notebooks

Package: Language: Python Python
In [1]:
# This is a package in preview.
from azureml.opendatasets import UsLaborLAUS

usLaborLAUS = UsLaborLAUS()
usLaborLAUS_df = usLaborLAUS.to_pandas_dataframe()
Looking for parquet files... Reading them into Pandas dataframe... Reading laus/part-00000-tid-6506298405389763282-d1280c40-3980-4136-af49-5def25951a63-53767-c000.snappy.parquet under container laborstatisticscontainer Done.
In [2]:
usLaborLAUS_df.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 12289052 entries, 0 to 12289051 Data columns (total 15 columns): area_code object area_type_code object srd_code object measure_code object series_id object year int32 period object value float32 footnote_codes object seasonal object series_title object measure_text object srd_text object areatype_text object area_text object dtypes: float32(1), int32(1), object(13) memory usage: 1.3+ GB
In [3]:
 
In [1]:
# Pip install packages
import os, sys

!{sys.executable} -m pip install azure-storage-blob
!{sys.executable} -m pip install pyarrow
!{sys.executable} -m pip install pandas
In [2]:
# Azure storage access info
azure_storage_account_name = "azureopendatastorage"
azure_storage_sas_token = r""
container_name = "laborstatisticscontainer"
folder_name = "laus/"
In [3]:
from azure.storage.blob import BlockBlobServicefrom azure.storage.blob import BlobServiceClient, BlobClient, ContainerClient

if azure_storage_account_name is None or azure_storage_sas_token is None:
    raise Exception(
        "Provide your specific name and key for your Azure Storage account--see the Prerequisites section earlier.")

print('Looking for the first parquet under the folder ' +
      folder_name + ' in container "' + container_name + '"...')
container_url = f"https://{azure_storage_account_name}.blob.core.windows.net/"
blob_service_client = BlobServiceClient(
    container_url, azure_storage_sas_token if azure_storage_sas_token else None)

container_client = blob_service_client.get_container_client(container_name)
blobs = container_client.list_blobs(folder_name)
sorted_blobs = sorted(list(blobs), key=lambda e: e.name, reverse=True)
targetBlobName = ''
for blob in sorted_blobs:
    if blob.name.startswith(folder_name) and blob.name.endswith('.parquet'):
        targetBlobName = blob.name
        break

print('Target blob to download: ' + targetBlobName)
_, filename = os.path.split(targetBlobName)
blob_client = container_client.get_blob_client(targetBlobName)
with open(filename, 'wb') as local_file:
    blob_client.download_blob().download_to_stream(local_file)
In [4]:
# Read the parquet file into Pandas data frame
import pandas as pd

print('Reading the parquet file into Pandas data frame')
df = pd.read_parquet(filename)
In [5]:
# you can add your filter at below
print('Loaded as a Pandas data frame: ')
df
In [6]:
 

Azure Databricks

Package: Language: Python Python
In [1]:
# This is a package in preview.
from azureml.opendatasets import UsLaborLAUS

usLaborLAUS = UsLaborLAUS()
usLaborLAUS_df = usLaborLAUS.to_spark_dataframe()
In [2]:
display(usLaborLAUS_df.limit(5))
area_codearea_type_codesrd_codemeasure_codeseries_idyearperiodvaluefootnote_codesseasonalseries_titlemeasure_textsrd_textareatype_textarea_text
CA3653200000000E363LAUCA3653200000000032000M014.7nanUUnemployment Rate: Syracuse-Auburn, NY Combined Statistical Area (U)unemployment rateNew YorkCombined areasSyracuse-Auburn, NY Combined Statistical Area
CA3653200000000E363LAUCA3653200000000032000M024.7nanUUnemployment Rate: Syracuse-Auburn, NY Combined Statistical Area (U)unemployment rateNew YorkCombined areasSyracuse-Auburn, NY Combined Statistical Area
CA3653200000000E363LAUCA3653200000000032000M034.2nanUUnemployment Rate: Syracuse-Auburn, NY Combined Statistical Area (U)unemployment rateNew YorkCombined areasSyracuse-Auburn, NY Combined Statistical Area
CA3653200000000E363LAUCA3653200000000032000M043.6nanUUnemployment Rate: Syracuse-Auburn, NY Combined Statistical Area (U)unemployment rateNew YorkCombined areasSyracuse-Auburn, NY Combined Statistical Area
CA3653200000000E363LAUCA3653200000000032000M053.6nanUUnemployment Rate: Syracuse-Auburn, NY Combined Statistical Area (U)unemployment rateNew YorkCombined areasSyracuse-Auburn, NY Combined Statistical Area
In [3]:
 
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "laborstatisticscontainer"
blob_relative_path = "laus/"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))

Azure Synapse

Package: Language: Python
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "laborstatisticscontainer"
blob_relative_path = "laus/"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))