Пропустить навигацию

New York City Safety Data

New York City Social Services 311 Service Requests City Government Public Safety

Все запросы в службу 311 города Нью-Йорка с 2010 г. до текущего момента.

Объем данных и их хранение

Этот набор данных хранится в формате Parquet. Он ежедневно обновляется и по состоянию на 2019 г. содержит около 12 млн строк (500 МБ).

Этот набор данных содержит архивные записи, собранные с 2010 года по сегодняшний день. Вы можете использовать параметры из нашего пакета SDK, чтобы получить данные за определенный диапазон времени.

Расположение хранилища

Этот набор данных хранится в регионе Azure “Восточная часть США”. Для обеспечения приближенности рекомендуется выделять вычислительные ресурсы в регионе “Восточная часть США”.

Дополнительные сведения

Этот набор данных получен от администрации города Нью-Йорка. Дополнительные сведения можно найти здесь. Здесь представлены условия использования этого набора данных.

Уведомления

КОРПОРАЦИЯ МАЙКРОСОФТ ПРЕДОСТАВЛЯЕТ ОТКРЫТЫЕ НАБОРЫ ДАННЫХ AZURE НА УСЛОВИЯХ “КАК ЕСТЬ”. КОРПОРАЦИЯ МАЙКРОСОФТ НЕ ПРЕДОСТАВЛЯЕТ НИКАКИХ ГАРАНТИЙ (ЯВНЫХ ИЛИ ПОДРАЗУМЕВАЕМЫХ) И НЕ ОБЕСПЕЧИВАЕТ НИКАКИХ УСЛОВИЙ В ОТНОШЕНИИ ИСПОЛЬЗОВАНИЯ ВАМИ ЭТИХ НАБОРОВ ДАННЫХ. В РАМКАХ, ДОПУСКАЕМЫХ МЕСТНЫМ ЗАКОНОДАТЕЛЬСТВОМ, КОРПОРАЦИЯ МАЙКРОСОФТ ОТКАЗЫВАЕТСЯ ОТ ОТВЕТСТВЕННОСТИ ЗА УЩЕРБ И УБЫТКИ (В ТОМ ЧИСЛЕ ПРЯМЫЕ, КОСВЕННЫЕ, СПЕЦИАЛЬНЫЕ, ОПОСРЕДОВАННЫЕ, СЛУЧАЙНЫЕ И ШТРАФНЫЕ), ПОНЕСЕННЫЕ В РЕЗУЛЬТАТЕ ИСПОЛЬЗОВАНИЯ ВАМИ ЭТИХ НАБОРОВ ДАННЫХ.

Этот набор данных предоставляется на тех же условиях, на которых корпорация Майкрософт получила исходные данные. Этот набор может включать данные, полученные от корпорации Майкрософт.

Access

Available inWhen to use
Azure Notebooks

Quickly explore the dataset with Jupyter notebooks hosted on Azure or your local machine.

Azure Databricks

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Azure Synapse

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Preview

dataType dataSubtype dateTime category subcategory status address latitude longitude source extendedProperties
Safety 311_All 8/5/2020 2:20:23 AM Street Condition Pothole Closed null 40.6152042633462 -73.9633617695842 null
Safety 311_All 8/5/2020 2:19:49 AM Street Condition Pothole Closed null 40.6152042633462 -73.9633617695842 null
Safety 311_All 8/5/2020 1:00:19 AM Noise - Residential Loud Talking In Progress 10 AVENUE 40.7646844424579 -73.9917873532958 null
Safety 311_All 8/5/2020 1:00:15 AM Damaged Tree Branch or Limb Has Fallen Down In Progress 1230 EAST 96 STREET 40.6415959870763 -73.8997563009577 null
Safety 311_All 8/5/2020 1:00:08 AM Noise - Commercial Car/Truck Music In Progress 920 TELLER AVENUE 40.8263058255065 -73.9154343681348 null
Safety 311_All 8/5/2020 12:59:54 AM Damaged Tree Entire Tree Has Fallen Down In Progress 99-09 24 AVENUE 40.7665722441916 -73.8709837393406 null
Safety 311_All 8/5/2020 12:59:53 AM Damaged Tree Entire Tree Has Fallen Down In Progress 99-09 24 AVENUE 40.7665722441916 -73.8709837393406 null
Safety 311_All 8/5/2020 12:59:53 AM Damaged Tree Entire Tree Has Fallen Down In Progress 99-09 24 AVENUE 40.7665722441916 -73.8709837393406 null
Safety 311_All 8/5/2020 12:59:53 AM Damaged Tree Branch Cracked and Will Fall In Progress 46-43 217 STREET 40.7584787805291 -73.7640534071836 null
Safety 311_All 8/5/2020 12:59:01 AM Noise - Residential Loud Television In Progress 92-01 LAMONT AVENUE 40.7446447233121 -73.8737075948781 null
Name Data type Unique Values (sample) Description
address string 1,412,259 89-21 ELMHURST AVENUE
34 ARDEN STREET

Указанный отправителем сообщения номер дома по адресу, где произошел инцидент.

category string 442 Noise - Residential
HEAT/HOT WATER

Это первый уровень иерархии, определяющий тему инцидента или состояния (тип заявления). У этого параметра может быть соответствующая подкатегория (дескриптор).

dataSubtype string 1 311_All

“311_All”

dataType string 1 Safety

“Safety”

dateTime timestamp 15,828,203 2013-01-24 00:00:00
2015-01-08 00:00:00

Дата вызова.

latitude double 1,186,279 40.1123853
40.7474203

Географическая широта места происшествия.

longitude double 1,208,096 -77.5195844
-73.876853

Географическая долгота места происшествия.

status string 12 Closed
Pending

Состояние вызова.

subcategory string 1,686 Loud Music/Party
HEAT

Столбец связан с категорией (типом заявления) и обеспечивает дополнительные сведения об инциденте и состоянии. Его значения зависят от типа заявления. Их не всегда требуется указывать в запросе на обслуживание.

Select your preferred service:

Azure Notebooks

Azure Databricks

Azure Synapse

Azure Notebooks

Package: Language: Python Python
In [1]:
# This is a package in preview.
from azureml.opendatasets import NycSafety

from datetime import datetime
from dateutil import parser


end_date = parser.parse('2016-01-01')
start_date = parser.parse('2015-05-01')
safety = NycSafety(start_date=start_date, end_date=end_date)
safety = safety.to_pandas_dataframe()
ActivityStarted, to_pandas_dataframe ActivityStarted, to_pandas_dataframe_in_worker Looking for parquet files... Reading them into Pandas dataframe... Reading Safety/Release/city=NewYorkCity/part-00026-tid-845600952581210110-a4f62588-4996-42d1-bc79-23a9b4635c63-446869.c000.snappy.parquet under container citydatacontainer Done. ActivityCompleted: Activity=to_pandas_dataframe_in_worker, HowEnded=Success, Duration=106593.46 [ms] ActivityCompleted: Activity=to_pandas_dataframe, HowEnded=Success, Duration=106687.96 [ms]
In [2]:
safety.info()
<class 'pandas.core.frame.DataFrame'> Int64Index: 1204035 entries, 7 to 12307252 Data columns (total 11 columns): dataType 1204035 non-null object dataSubtype 1204035 non-null object dateTime 1204035 non-null datetime64[ns] category 1204035 non-null object subcategory 1203974 non-null object status 1204035 non-null object address 1010833 non-null object latitude 1169358 non-null float64 longitude 1169358 non-null float64 source 0 non-null object extendedProperties 0 non-null object dtypes: datetime64[ns](1), float64(2), object(8) memory usage: 110.2+ MB
In [1]:
# Pip install packages
import os, sys

!{sys.executable} -m pip install azure-storage-blob
!{sys.executable} -m pip install pyarrow
!{sys.executable} -m pip install pandas
In [2]:
# Azure storage access info
azure_storage_account_name = "azureopendatastorage"
azure_storage_sas_token = r""
container_name = "citydatacontainer"
folder_name = "Safety/Release/city=NewYorkCity"
In [3]:
from azure.storage.blob import BlockBlobServicefrom azure.storage.blob import BlobServiceClient, BlobClient, ContainerClient

if azure_storage_account_name is None or azure_storage_sas_token is None:
    raise Exception(
        "Provide your specific name and key for your Azure Storage account--see the Prerequisites section earlier.")

print('Looking for the first parquet under the folder ' +
      folder_name + ' in container "' + container_name + '"...')
container_url = f"https://{azure_storage_account_name}.blob.core.windows.net/"
blob_service_client = BlobServiceClient(
    container_url, azure_storage_sas_token if azure_storage_sas_token else None)

container_client = blob_service_client.get_container_client(container_name)
blobs = container_client.list_blobs(folder_name)
sorted_blobs = sorted(list(blobs), key=lambda e: e.name, reverse=True)
targetBlobName = ''
for blob in sorted_blobs:
    if blob.name.startswith(folder_name) and blob.name.endswith('.parquet'):
        targetBlobName = blob.name
        break

print('Target blob to download: ' + targetBlobName)
_, filename = os.path.split(targetBlobName)
blob_client = container_client.get_blob_client(targetBlobName)
with open(filename, 'wb') as local_file:
    blob_client.download_blob().download_to_stream(local_file)
In [4]:
# Read the parquet file into Pandas data frame
import pandas as pd

print('Reading the parquet file into Pandas data frame')
df = pd.read_parquet(filename)
In [5]:
# you can add your filter at below
print('Loaded as a Pandas data frame: ')
df
In [6]:
 

Azure Databricks

Package: Language: Python Python
In [1]:
# This is a package in preview.
# You need to pip install azureml-opendatasets in Databricks cluster. https://docs.microsoft.com/en-us/azure/data-explorer/connect-from-databricks#install-the-python-library-on-your-azure-databricks-cluster
from azureml.opendatasets import NycSafety

from datetime import datetime
from dateutil import parser


end_date = parser.parse('2016-01-01')
start_date = parser.parse('2015-05-01')
safety = NycSafety(start_date=start_date, end_date=end_date)
safety = safety.to_spark_dataframe()
ActivityStarted, to_spark_dataframe ActivityStarted, to_spark_dataframe_in_worker ActivityCompleted: Activity=to_spark_dataframe_in_worker, HowEnded=Success, Duration=4392.11 [ms] ActivityCompleted: Activity=to_spark_dataframe, HowEnded=Success, Duration=4395.98 [ms]
In [2]:
display(safety.limit(5))
dataTypedataSubtypedateTimecategorysubcategorystatusaddresslatitudelongitudesourceextendedProperties
Safety311_All2015-12-28T13:58:58.000+0000HEAT/HOT WATERENTIRE BUILDINGClosed548 11 STREET40.664924841709606-73.98101480555805nullnull
Safety311_All2015-06-14T01:11:08.000+0000Noise - ResidentialLoud Music/PartyClosednull40.86969422534882-73.86620623861982nullnull
Safety311_All2015-06-14T04:47:37.000+0000Noise - ResidentialLoud TalkingClosednull40.858744389082254-73.93011726711445nullnull
Safety311_All2015-06-16T16:56:00.000+0000SewerCatch Basin Clogged/Flooding (Use Comments) (SC)Closed82 JEWETT AVENUE40.63510898432114-74.12886658384302nullnull
Safety311_All2015-06-22T14:03:05.000+0000ELECTRICLIGHTINGClosed2170 BATHGATE AVENUE40.852335329676464-73.89389734164266nullnull
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "citydatacontainer"
blob_relative_path = "Safety/Release/city=NewYorkCity"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))

Azure Synapse

Package: Language: Python Python
In [15]:
# This is a package in preview.
from azureml.opendatasets import NycSafety

from datetime import datetime
from dateutil import parser


end_date = parser.parse('2016-01-01')
start_date = parser.parse('2015-05-01')
safety = NycSafety(start_date=start_date, end_date=end_date)
safety = safety.to_spark_dataframe()
In [16]:
# Display top 5 rows
display(safety.limit(5))
Out[16]:
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "citydatacontainer"
blob_relative_path = "Safety/Release/city=NewYorkCity"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))

City Safety

From the Urban Innovation Initiative at Microsoft Research, databricks notebook for analytics with safety data (311 and 911 call data) from major U.S. cities. Analyses show frequency distributions and geographic clustering of safety issues within cities.