Пропустить навигацию

Boston Safety Data

Boston 311 CRM Case Management City Services Public Safety

Вызовы на номер 311 в городе Бостоне.

Перейдите по ссылке для получения дополнительных сведений о BOS:311.

Объем данных и их хранение

Этот набор данных хранится в формате Parquet. Он ежедневно обновляется и по состоянию на 2019 г. содержит около 100 тыс. строк (10 МБ).

Этот набор данных содержит архивные записи, собранные с 2011 г. по сегодняшний день. Вы можете использовать параметры из нашего пакета SDK, чтобы получить данные за определенный диапазон времени.

Место хранения

Этот набор данных хранится в регионе Azure “Восточная часть США”. Для обеспечения приближенности рекомендуется выделять вычислительные ресурсы в регионе “Восточная часть США”.

Дополнительная информация

Этот набор данных получен от администрации города Бостона. Дополнительные сведения можно найти здесь. Ознакомьтесь с лицензией на использование этих данных на странице со сведениями о передаче в открытый доступ и лицензии Open Data Commons (ODC PDDL).

Объявления

КОРПОРАЦИЯ МАЙКРОСОФТ ПРЕДОСТАВЛЯЕТ ОТКРЫТЫЕ НАБОРЫ ДАННЫХ AZURE НА УСЛОВИЯХ “КАК ЕСТЬ”. КОРПОРАЦИЯ МАЙКРОСОФТ НЕ ПРЕДОСТАВЛЯЕТ НИКАКИХ ГАРАНТИЙ (ЯВНЫХ ИЛИ ПОДРАЗУМЕВАЕМЫХ) И НЕ ОБЕСПЕЧИВАЕТ НИКАКИХ УСЛОВИЙ В ОТНОШЕНИИ ИСПОЛЬЗОВАНИЯ ВАМИ ЭТИХ НАБОРОВ ДАННЫХ. В РАМКАХ, ДОПУСКАЕМЫХ МЕСТНЫМ ЗАКОНОДАТЕЛЬСТВОМ, КОРПОРАЦИЯ МАЙКРОСОФТ ОТКАЗЫВАЕТСЯ ОТ ОТВЕТСТВЕННОСТИ ЗА УЩЕРБ И УБЫТКИ (В ТОМ ЧИСЛЕ ПРЯМЫЕ, КОСВЕННЫЕ, СПЕЦИАЛЬНЫЕ, ОПОСРЕДОВАННЫЕ, СЛУЧАЙНЫЕ И ШТРАФНЫЕ), ПОНЕСЕННЫЕ В РЕЗУЛЬТАТЕ ИСПОЛЬЗОВАНИЯ ВАМИ ЭТИХ НАБОРОВ ДАННЫХ.

Этот набор данных предоставляется на тех же условиях, на которых корпорация Майкрософт получила исходные данные. Этот набор может включать данные, полученные от корпорации Майкрософт.

Access

Available inWhen to use
Azure Notebooks

Quickly explore the dataset with Jupyter notebooks hosted on Azure or your local machine.

Azure Databricks

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Azure Synapse

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Preview

dataType dataSubtype dateTime category subcategory status address latitude longitude source extendedProperties
Safety 311_All 2/27/2021 11:43:45 PM Enforcement & Abandoned Vehicles Parking Enforcement Open INTERSECTION of Trenton St & Brooks St East Boston MA 42.3594 -71.0587 Citizens Connect App
Safety 311_All 2/27/2021 11:42:56 PM Enforcement & Abandoned Vehicles Parking Enforcement Open INTERSECTION of Trenton St & Brooks St East Boston MA 42.3594 -71.0587 Citizens Connect App
Safety 311_All 2/27/2021 11:42:04 PM Enforcement & Abandoned Vehicles Parking Enforcement Open INTERSECTION of Trenton St & Brooks St East Boston MA 42.3594 -71.0587 Citizens Connect App
Safety 311_All 2/27/2021 11:25:00 PM Enforcement & Abandoned Vehicles Parking Enforcement Open 21 Readville St Hyde Park MA 02136 42.2451 -71.1342 Citizens Connect App
Safety 311_All 2/27/2021 11:23:32 PM Highway Maintenance Request for Pothole Repair Open 43 Pearl St Charlestown MA 02129 42.379 -71.0639 Citizens Connect App
Safety 311_All 2/27/2021 11:14:58 PM Street Lights Street Light Outages Open 22 Neptune Cir East Boston MA 02128 42.3806 -71.0181 Citizens Connect App
Safety 311_All 2/27/2021 11:13:24 PM Enforcement & Abandoned Vehicles Parking Enforcement Open 6 Beechcroft St Brighton MA 02135 42.3494 -71.1614 Citizens Connect App
Safety 311_All 2/27/2021 11:11:39 PM Street Lights Street Light Outages Open 1918-1920 Beacon St Brighton MA 02135 42.3365 -71.1492 Citizens Connect App
Safety 311_All 2/27/2021 11:02:48 PM Street Lights Street Light Outages Open INTERSECTION of Prendergast Ave & Beacon St Brighton MA 42.3594 -71.0587 Citizens Connect App
Safety 311_All 2/27/2021 11:00:44 PM Street Lights Street Light Outages Open INTERSECTION of Beacon St & Chestnut Hill Ave Brighton MA 42.3594 -71.0587 Citizens Connect App
Name Data type Unique Values (sample) Description
address string 142,093 \" \"
1 City Hall Plz Boston MA 02108

Расположение.

category string 54 Street Cleaning
Sanitation

Причина вызова.

dataSubtype string 1 311_All

“311_All”

dataType string 1 Safety

“Safety”

dateTime timestamp 1,727,609 2015-07-23 10:51:00
2015-07-23 10:47:00

Дата и время открытия запроса на обслуживание.

latitude double 1,622 42.3594
42.3603

Это значение широты. Линии широты располагаются параллельно экватору.

longitude double 1,806 -71.0587
-71.0583

Это значение долготы. Линии долготы параллельны линиям широты и проходят через оба полюса.

source string 7 Constituent Call
Citizens Connect App

Источник заявки.

status string 2 Closed
Open

Состояние заявки.

subcategory string 208 Parking Enforcement
Requests for Street Cleaning

Тип вызова.

Select your preferred service:

Azure Notebooks

Azure Databricks

Azure Synapse

Azure Notebooks

Package: Language: Python Python
In [1]:
# This is a package in preview.
from azureml.opendatasets import BostonSafety

from datetime import datetime
from dateutil import parser


end_date = parser.parse('2016-01-01')
start_date = parser.parse('2015-05-01')
safety = BostonSafety(start_date=start_date, end_date=end_date)
safety = safety.to_pandas_dataframe()
ActivityStarted, to_pandas_dataframe ActivityStarted, to_pandas_dataframe_in_worker Looking for parquet files... Reading them into Pandas dataframe... Reading Safety/Release/city=Boston/part-00196-tid-845600952581210110-a4f62588-4996-42d1-bc79-23a9b4635c63-447039.c000.snappy.parquet under container citydatacontainer Done. ActivityCompleted: Activity=to_pandas_dataframe_in_worker, HowEnded=Success, Duration=2213.69 [ms] ActivityCompleted: Activity=to_pandas_dataframe, HowEnded=Success, Duration=2216.01 [ms]
In [2]:
safety.info()
<class 'pandas.core.frame.DataFrame'> Int64Index: 1 entries, 56262 to 56262 Data columns (total 11 columns): dataType 1 non-null object dataSubtype 1 non-null object dateTime 1 non-null datetime64[ns] category 1 non-null object subcategory 1 non-null object status 1 non-null object address 1 non-null object latitude 1 non-null float64 longitude 1 non-null float64 source 1 non-null object extendedProperties 0 non-null object dtypes: datetime64[ns](1), float64(2), object(8) memory usage: 96.0+ bytes
In [1]:
# Pip install packages
import os, sys

!{sys.executable} -m pip install azure-storage-blob
!{sys.executable} -m pip install pyarrow
!{sys.executable} -m pip install pandas
In [2]:
# Azure storage access info
azure_storage_account_name = "azureopendatastorage"
azure_storage_sas_token = r""
container_name = "citydatacontainer"
folder_name = "Safety/Release/city=Boston"
In [3]:
from azure.storage.blob import BlockBlobServicefrom azure.storage.blob import BlobServiceClient, BlobClient, ContainerClient

if azure_storage_account_name is None or azure_storage_sas_token is None:
    raise Exception(
        "Provide your specific name and key for your Azure Storage account--see the Prerequisites section earlier.")

print('Looking for the first parquet under the folder ' +
      folder_name + ' in container "' + container_name + '"...')
container_url = f"https://{azure_storage_account_name}.blob.core.windows.net/"
blob_service_client = BlobServiceClient(
    container_url, azure_storage_sas_token if azure_storage_sas_token else None)

container_client = blob_service_client.get_container_client(container_name)
blobs = container_client.list_blobs(folder_name)
sorted_blobs = sorted(list(blobs), key=lambda e: e.name, reverse=True)
targetBlobName = ''
for blob in sorted_blobs:
    if blob.name.startswith(folder_name) and blob.name.endswith('.parquet'):
        targetBlobName = blob.name
        break

print('Target blob to download: ' + targetBlobName)
_, filename = os.path.split(targetBlobName)
blob_client = container_client.get_blob_client(targetBlobName)
with open(filename, 'wb') as local_file:
    blob_client.download_blob().download_to_stream(local_file)
In [4]:
# Read the parquet file into Pandas data frame
import pandas as pd

print('Reading the parquet file into Pandas data frame')
df = pd.read_parquet(filename)
In [5]:
# you can add your filter at below
print('Loaded as a Pandas data frame: ')
df
In [6]:
 

Azure Databricks

Package: Language: Python Python
In [1]:
# This is a package in preview.
# You need to pip install azureml-opendatasets in Databricks cluster. https://docs.microsoft.com/en-us/azure/data-explorer/connect-from-databricks#install-the-python-library-on-your-azure-databricks-cluster
from azureml.opendatasets import BostonSafety

from datetime import datetime
from dateutil import parser


end_date = parser.parse('2016-01-01')
start_date = parser.parse('2015-05-01')
safety = BostonSafety(start_date=start_date, end_date=end_date)
safety = safety.to_spark_dataframe()
ActivityStarted, to_spark_dataframe ActivityStarted, to_spark_dataframe_in_worker ActivityCompleted: Activity=to_spark_dataframe_in_worker, HowEnded=Success, Duration=2380.02 [ms] ActivityCompleted: Activity=to_spark_dataframe, HowEnded=Success, Duration=2381.75 [ms]
In [2]:
display(safety)
dataTypedataSubtypedateTimecategorysubcategorystatusaddresslatitudelongitudesourceextendedProperties
Safety311_All2015-07-24T12:48:24.000+0000Call InquiryOCR Front Desk InteractionsClosed 42.3594-71.0587Constituent Callnull
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "citydatacontainer"
blob_relative_path = "Safety/Release/city=Boston"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))

Azure Synapse

Package: Language: Python Python
In [1]:
from azureml.opendatasets import BostonSafety

from datetime import datetime
from dateutil import parser


end_date = parser.parse('2016-01-01')
start_date = parser.parse('2015-05-01')
safety = BostonSafety(start_date=start_date, end_date=end_date)
safety = safety.to_spark_dataframe()
ActivityStarted, to_spark_dataframe ActivityStarted, to_spark_dataframe_in_worker ActivityCompleted: Activity=to_spark_dataframe_in_worker, HowEnded=Success, Duration=2380.02 [ms] ActivityCompleted: Activity=to_spark_dataframe, HowEnded=Success, Duration=2381.75 [ms]
In [2]:
display(safety)
dataTypedataSubtypedateTimecategorysubcategorystatusaddresslatitudelongitudesourceextendedProperties
Safety311_All2015-07-24T12:48:24.000+0000Call InquiryOCR Front Desk InteractionsClosed 42.3594-71.0587Constituent Callnull
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "citydatacontainer"
blob_relative_path = "Safety/Release/city=Boston"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))

City Safety

From the Urban Innovation Initiative at Microsoft Research, databricks notebook for analytics with safety data (311 and 911 call data) from major U.S. cities. Analyses show frequency distributions and geographic clustering of safety issues within cities.