Ignorar Navegação

Seattle Safety Data

Seattle 911 Fire Dispatch E911 SFD Mobile Public Safety

Despachos do 112 dos Bombeiros de Seattle.

Volume e Retenção

Este conjunto de dados é armazenado no formato Parquet. É atualizado diariamente e contém cerca de 800 000 linhas (20 MB) no total à data de 2019.

Este conjunto de dados contém registos históricos acumulados desde 2010 até ao presente. Pode utilizar as definições de parâmetros no nosso SDK para obter os dados num intervalo de tempo específico.

Localização do Armazenamento

Este conjunto de dados é armazenado na região do Azure E.U.A. Leste. A alocação de recursos de computação nos E.U.A. Leste é recomendada por questões de afinidade.

Informações adicionais

Este conjunto de dados foi obtido junto da câmara de Seattle. A ligação de origem está disponível aqui. Encontre Licensing and Attribution (Licenciamento e Atribuição) para obter os termos da utilização deste conjunto de dados. Se tiver dúvidas sobre a origem de dados, envie um e-mail para .

Avisos

A MICROSOFT DISPONIBILIZA OS CONJUNTOS DE DADOS ABERTOS DO AZURE TAL COMO ESTÃO. A MICROSOFT NÃO FAZ GARANTIAS, EXPRESSAS OU IMPLÍCITAS, NEM CONDIÇÕES RELATIVAMENTE À SUA UTILIZAÇÃO DOS CONJUNTOS DE DADOS. ATÉ AO LIMITE MÁXIMO PERMITIDO PELA LEGISLAÇÃO LOCAL, A MICROSOFT REJEITA QUALQUER RESPONSABILIDADE POR DANOS OU PERDAS, INCLUINDO DIRETOS, CONSEQUENCIAIS, ESPECIAIS, INDIRETOS, INCIDENTAIS OU PUNITIVOS, QUE RESULTEM DA SUA UTILIZAÇÃO DOS CONJUNTOS DE DADOS.

Este conjunto de dados é disponibilizado de acordo com os termos originais em que a Microsoft recebeu os dados de origem. O conjunto de dados pode incluir dados obtidos junto da Microsoft.

Access

Available inWhen to use
Azure Notebooks

Quickly explore the dataset with Jupyter notebooks hosted on Azure or your local machine.

Azure Databricks

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Azure Synapse

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Preview

dataType dataSubtype dateTime category subcategory status address latitude longitude source extendedProperties
Safety 911_Fire 4/29/2021 9:41:00 AM Aid Response null null 2900 3rd Ave W 47.645803 -122.360896 null
Safety 911_Fire 4/29/2021 9:38:00 AM Triaged Incident null null 717 Dexter Ave N 47.625543 -122.342341 null
Safety 911_Fire 4/29/2021 9:13:00 AM MVI - Motor Vehicle Incident null null Nb I5 At Spring 47.607213 -122.329728 null
Safety 911_Fire 4/29/2021 9:11:00 AM Low Acuity Response null null 725 9th Ave 47.606444 -122.325563 null
Safety 911_Fire 4/29/2021 9:11:00 AM Medic Response null null 10417 60th Ave S 47.507544 -122.258371 null
Safety 911_Fire 4/29/2021 9:10:00 AM 1RED 1 Unit null null 12501 28th Ave Ne 47.719292 -122.297803 null
Safety 911_Fire 4/29/2021 9:05:00 AM Auto Fire Alarm null null 3670 East Marginal Way S 47.56934 -122.339382 null
Safety 911_Fire 4/29/2021 9:01:00 AM Aid Response null null 13737 30th Ave Ne 47.728181 -122.296431 null
Safety 911_Fire 4/29/2021 8:48:00 AM Aid Response null null 912 E Thomas St 47.621077 -122.320775 null
Safety 911_Fire 4/29/2021 8:47:00 AM Aid Response null null 2501 14th Ave W 47.640681 -122.375011 null
Name Data type Unique Values (sample) Description
address string 196,858 517 3rd Av
318 2nd Av Et S

O local do incidente.

category string 231 Aid Response
Medic Response

Tipo de Resposta.

dataSubtype string 1 911_Fire

“911_Fire”

dataType string 1 Safety

“Segurança”

dateTime timestamp 1,532,155 2020-11-04 06:49:00
2019-06-10 21:21:00

A data e hora da chamada.

latitude double 94,312 47.602172
47.600194

Este é o valor da latitude. As linhas da latitude são paralelas ao equador.

longitude double 79,476 -122.330863
-122.330541

Este é o valor da longitude. As linhas da longitude são perpendiculares às linhas da latitude e todas passam por ambos os polos.

Select your preferred service:

Azure Notebooks

Azure Databricks

Azure Synapse

Azure Notebooks

Package: Language: Python Python
In [1]:
# This is a package in preview.
from azureml.opendatasets import SeattleSafety

from datetime import datetime
from dateutil import parser


end_date = parser.parse('2016-01-01')
start_date = parser.parse('2015-05-01')
safety = SeattleSafety(start_date=start_date, end_date=end_date)
safety = safety.to_pandas_dataframe()
ActivityStarted, to_pandas_dataframe ActivityStarted, to_pandas_dataframe_in_worker Looking for parquet files... Reading them into Pandas dataframe... Reading Safety/Release/city=Seattle/part-00119-tid-845600952581210110-a4f62588-4996-42d1-bc79-23a9b4635c63-446962.c000.snappy.parquet under container citydatacontainer Done. ActivityCompleted: Activity=to_pandas_dataframe_in_worker, HowEnded=Success, Duration=6116.21 [ms] ActivityCompleted: Activity=to_pandas_dataframe, HowEnded=Success, Duration=6117.7 [ms]
In [2]:
safety.info()
<class 'pandas.core.frame.DataFrame'> Int64Index: 68346 entries, 14 to 1382908 Data columns (total 11 columns): dataType 68346 non-null object dataSubtype 68346 non-null object dateTime 68346 non-null datetime64[ns] category 68346 non-null object subcategory 0 non-null object status 0 non-null object address 68345 non-null object latitude 68346 non-null float64 longitude 68346 non-null float64 source 0 non-null object extendedProperties 68346 non-null object dtypes: datetime64[ns](1), float64(2), object(8) memory usage: 6.3+ MB
In [1]:
# Pip install packages
import os, sys

!{sys.executable} -m pip install azure-storage-blob
!{sys.executable} -m pip install pyarrow
!{sys.executable} -m pip install pandas
In [2]:
# Azure storage access info
azure_storage_account_name = "azureopendatastorage"
azure_storage_sas_token = r""
container_name = "citydatacontainer"
folder_name = "Safety/Release/city=Seattle"
In [3]:
from azure.storage.blob import BlockBlobServicefrom azure.storage.blob import BlobServiceClient, BlobClient, ContainerClient

if azure_storage_account_name is None or azure_storage_sas_token is None:
    raise Exception(
        "Provide your specific name and key for your Azure Storage account--see the Prerequisites section earlier.")

print('Looking for the first parquet under the folder ' +
      folder_name + ' in container "' + container_name + '"...')
container_url = f"https://{azure_storage_account_name}.blob.core.windows.net/"
blob_service_client = BlobServiceClient(
    container_url, azure_storage_sas_token if azure_storage_sas_token else None)

container_client = blob_service_client.get_container_client(container_name)
blobs = container_client.list_blobs(folder_name)
sorted_blobs = sorted(list(blobs), key=lambda e: e.name, reverse=True)
targetBlobName = ''
for blob in sorted_blobs:
    if blob.name.startswith(folder_name) and blob.name.endswith('.parquet'):
        targetBlobName = blob.name
        break

print('Target blob to download: ' + targetBlobName)
_, filename = os.path.split(targetBlobName)
blob_client = container_client.get_blob_client(targetBlobName)
with open(filename, 'wb') as local_file:
    blob_client.download_blob().download_to_stream(local_file)
In [4]:
# Read the parquet file into Pandas data frame
import pandas as pd

print('Reading the parquet file into Pandas data frame')
df = pd.read_parquet(filename)
In [5]:
# you can add your filter at below
print('Loaded as a Pandas data frame: ')
df
In [6]:
 

Azure Databricks

Package: Language: Python Python
In [1]:
# This is a package in preview.
# You need to pip install azureml-opendatasets in Databricks cluster. https://docs.microsoft.com/en-us/azure/data-explorer/connect-from-databricks#install-the-python-library-on-your-azure-databricks-cluster
from azureml.opendatasets import SeattleSafety

from datetime import datetime
from dateutil import parser


end_date = parser.parse('2016-01-01')
start_date = parser.parse('2015-05-01')
safety = SeattleSafety(start_date=start_date, end_date=end_date)
safety = safety.to_spark_dataframe()
ActivityStarted, to_spark_dataframe ActivityStarted, to_spark_dataframe_in_worker ActivityCompleted: Activity=to_spark_dataframe_in_worker, HowEnded=Success, Duration=2751.74 [ms] ActivityCompleted: Activity=to_spark_dataframe, HowEnded=Success, Duration=2753.86 [ms]
In [2]:
display(safety.limit(5))
dataTypedataSubtypedateTimecategorysubcategorystatusaddresslatitudelongitudesourceextendedProperties
Safety911_Fire2015-05-04T19:18:42.000+0000Medic Responsenullnull7101 38th Av S47.538872-122.284744nullincident_number:F150047883
Safety911_Fire2015-12-01T23:29:47.000+0000Aid Responsenullnull1011 S Weller St47.597509-122.319511nullincident_number:F150137603
Safety911_Fire2015-12-13T20:20:59.000+0000Aid Responsenullnull10049 College Way N47.701742-122.335029nullincident_number:F150142622
Safety911_Fire2015-11-23T00:19:21.000+0000Medic Responsenullnull9428 58th Av S47.518216-122.260497nullincident_number:F150134268
Safety911_Fire2015-05-19T16:25:55.000+0000Medic Responsenullnull10011 51st Av S47.510803-122.27006nullincident_number:F150054054
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "citydatacontainer"
blob_relative_path = "Safety/Release/city=Seattle"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))

Azure Synapse

Package: Language: Python Python SQL
In [21]:
# This is a package in preview.
from azureml.opendatasets import SeattleSafety

from datetime import datetime
from dateutil import parser


end_date = parser.parse('2016-01-01')
start_date = parser.parse('2015-05-01')
safety = SeattleSafety(start_date=start_date, end_date=end_date)
safety = safety.to_spark_dataframe()
In [22]:
# Display top 5 rows
display(safety.limit(5))
Out[22]:
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "citydatacontainer"
blob_relative_path = "Safety/Release/city=Seattle"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))
SELECT
    TOP 100 *
FROM
    OPENROWSET(
        BULK             'https://azureopendatastorage.blob.core.windows.net/citydatacontainer/Safety/Release/city=Seattle/*.parquet',
        FORMAT         = 'parquet'
    ) AS [r];

City Safety

From the Urban Innovation Initiative at Microsoft Research, databricks notebook for analytics with safety data (311 and 911 call data) from major U.S. cities. Analyses show frequency distributions and geographic clustering of safety issues within cities.