Chamadas para o 311 comunicadas pela câmara de Boston.
Siga esta ligação para saber mais sobre o BOS:311.
Volume e Retenção
Este conjunto de dados é armazenado no formato Parquet. É atualizado diariamente e contém cerca de 100 000 linhas (10 MB) no total à data de 2019.
Este conjunto de dados contém registos históricos acumulados desde 2011 até ao presente. Pode utilizar as definições de parâmetros no nosso SDK para obter os dados num intervalo de tempo específico.
Localização do Armazenamento
Este conjunto de dados é armazenado na região do Azure E.U.A. Leste. A alocação de recursos de computação nos E.U.A. Leste é recomendada por questões de afinidade.
Informações adicionais
Este conjunto de dados foi obtido junto da câmara de Boston. Pode encontrar mais detalhes aqui. Para obter a licença para utilizar este conjunto de dados, veja Open Data Commons Public Domain Dedication and License (ODC PDDL).
Avisos
A MICROSOFT DISPONIBILIZA OS CONJUNTOS DE DADOS ABERTOS DO AZURE TAL COMO ESTÃO. A MICROSOFT NÃO FAZ GARANTIAS, EXPRESSAS OU IMPLÍCITAS, NEM CONDIÇÕES RELATIVAMENTE À SUA UTILIZAÇÃO DOS CONJUNTOS DE DADOS. ATÉ AO LIMITE MÁXIMO PERMITIDO PELA LEGISLAÇÃO LOCAL, A MICROSOFT REJEITA QUALQUER RESPONSABILIDADE POR DANOS OU PERDAS, INCLUINDO DIRETOS, CONSEQUENCIAIS, ESPECIAIS, INDIRETOS, INCIDENTAIS OU PUNITIVOS, QUE RESULTEM DA SUA UTILIZAÇÃO DOS CONJUNTOS DE DADOS.
Este conjunto de dados é disponibilizado de acordo com os termos originais em que a Microsoft recebeu os dados de origem. O conjunto de dados pode incluir dados obtidos junto da Microsoft.
Access
Available in | When to use |
---|---|
Azure Notebooks | Quickly explore the dataset with Jupyter notebooks hosted on Azure or your local machine. |
Azure Databricks | Use this when you need the scale of an Azure managed Spark cluster to process the dataset. |
Azure Synapse | Use this when you need the scale of an Azure managed Spark cluster to process the dataset. |
Preview
dataType | dataSubtype | dateTime | category | subcategory | status | address | latitude | longitude | source | extendedProperties |
---|---|---|---|---|---|---|---|---|---|---|
Safety | 311_All | 2/21/2021 12:03:17 AM | Code Enforcement | Unshoveled Sidewalk | Open | 10 Dawes St Dorchester MA 02125 | 42.3189 | -71.0602 | Citizens Connect App | |
Safety | 311_All | 2/21/2021 12:01:52 AM | Enforcement & Abandoned Vehicles | Parking Enforcement | Open | 195 E Cottage St Dorchester MA 02125 | 42.3197 | -71.0608 | Citizens Connect App | |
Safety | 311_All | 2/21/2021 12:01:00 AM | Notification | Notification | Open | 280 Friend St Boston MA 02114 | 42.3649 | -71.0619 | Constituent Call | |
Safety | 311_All | 2/21/2021 12:00:58 AM | Code Enforcement | Unshoveled Sidewalk | Open | 187 E Cottage St Dorchester MA 02125 | 42.3199 | -71.0612 | Citizens Connect App | |
Safety | 311_All | 2/21/2021 12:00:04 AM | Code Enforcement | Unshoveled Sidewalk | Open | 201 E Cottage St Dorchester MA 02125 | 42.3195 | -71.0606 | Citizens Connect App | |
Safety | 311_All | 2/20/2021 11:51:00 PM | Signs & Signals | Traffic Signal Inspection | Open | INTERSECTION of Massachusetts Ave & Beacon St Boston MA | 42.3594 | -71.0587 | Constituent Call | |
Safety | 311_All | 2/20/2021 11:41:11 PM | Street Cleaning | Requests for Street Cleaning | Open | 81 Belnel Rd Mattapan MA 02126 | 42.2605 | -71.1041 | Citizens Connect App | |
Safety | 311_All | 2/20/2021 11:40:54 PM | Street Cleaning | Requests for Street Cleaning | Open | 81 Belnel Rd Mattapan MA 02126 | 42.2605 | -71.1041 | Citizens Connect App | |
Safety | 311_All | 2/20/2021 11:11:40 PM | Street Cleaning | Pick up Dead Animal | Open | 8 Beacon St Boston MA 02108 | 42.3582 | -71.0616 | Citizens Connect App | |
Safety | 311_All | 2/20/2021 11:05:00 PM | Highway Maintenance | Request for Pothole Repair | Open | 55 Church St West Roxbury MA 02132 | 42.2898 | -71.1463 | Citizens Connect App |
Name | Data type | Unique | Values (sample) | Description |
---|---|---|---|---|
address | string | 142,046 | \" \" 1 City Hall Plz Boston MA 02108 |
Localização. |
category | string | 54 | Street Cleaning Sanitation |
Motivo do pedido de serviço. |
dataSubtype | string | 1 | 311_All | “311_All” |
dataType | string | 1 | Safety | “Segurança” |
dateTime | timestamp | 1,723,318 | 2015-07-23 10:51:00 2015-07-23 10:47:00 |
Data e hora de abertura do pedido de emergência. |
latitude | double | 1,622 | 42.3594 42.3603 |
Este é o valor da latitude. As linhas da latitude são paralelas ao equador. |
longitude | double | 1,806 | -71.0587 -71.0583 |
Este é o valor da longitude. As linhas da longitude são perpendiculares às linhas da latitude e todas passam por ambos os polos. |
source | string | 7 | Constituent Call Citizens Connect App |
Origem original do incidente. |
status | string | 2 | Closed Open |
Estado do caso. |
subcategory | string | 208 | Parking Enforcement Requests for Street Cleaning |
Tipo do pedido de serviço. |
Azure Notebooks
# This is a package in preview.
from azureml.opendatasets import BostonSafety
from datetime import datetime
from dateutil import parser
end_date = parser.parse('2016-01-01')
start_date = parser.parse('2015-05-01')
safety = BostonSafety(start_date=start_date, end_date=end_date)
safety = safety.to_pandas_dataframe()
safety.info()
# Pip install packages
import os, sys
!{sys.executable} -m pip install azure-storage-blob
!{sys.executable} -m pip install pyarrow
!{sys.executable} -m pip install pandas
# Azure storage access info
azure_storage_account_name = "azureopendatastorage"
azure_storage_sas_token = r""
container_name = "citydatacontainer"
folder_name = "Safety/Release/city=Boston"
from azure.storage.blob import BlockBlobServicefrom azure.storage.blob import BlobServiceClient, BlobClient, ContainerClient
if azure_storage_account_name is None or azure_storage_sas_token is None:
raise Exception(
"Provide your specific name and key for your Azure Storage account--see the Prerequisites section earlier.")
print('Looking for the first parquet under the folder ' +
folder_name + ' in container "' + container_name + '"...')
container_url = f"https://{azure_storage_account_name}.blob.core.windows.net/"
blob_service_client = BlobServiceClient(
container_url, azure_storage_sas_token if azure_storage_sas_token else None)
container_client = blob_service_client.get_container_client(container_name)
blobs = container_client.list_blobs(folder_name)
sorted_blobs = sorted(list(blobs), key=lambda e: e.name, reverse=True)
targetBlobName = ''
for blob in sorted_blobs:
if blob.name.startswith(folder_name) and blob.name.endswith('.parquet'):
targetBlobName = blob.name
break
print('Target blob to download: ' + targetBlobName)
_, filename = os.path.split(targetBlobName)
blob_client = container_client.get_blob_client(targetBlobName)
with open(filename, 'wb') as local_file:
blob_client.download_blob().download_to_stream(local_file)
# Read the parquet file into Pandas data frame
import pandas as pd
print('Reading the parquet file into Pandas data frame')
df = pd.read_parquet(filename)
# you can add your filter at below
print('Loaded as a Pandas data frame: ')
df
Azure Databricks
# This is a package in preview.
# You need to pip install azureml-opendatasets in Databricks cluster. https://docs.microsoft.com/en-us/azure/data-explorer/connect-from-databricks#install-the-python-library-on-your-azure-databricks-cluster
from azureml.opendatasets import BostonSafety
from datetime import datetime
from dateutil import parser
end_date = parser.parse('2016-01-01')
start_date = parser.parse('2015-05-01')
safety = BostonSafety(start_date=start_date, end_date=end_date)
safety = safety.to_spark_dataframe()
display(safety)
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "citydatacontainer"
blob_relative_path = "Safety/Release/city=Boston"
blob_sas_token = r""
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
blob_sas_token)
print('Remote blob path: ' + wasbs_path)
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))
Azure Synapse
from azureml.opendatasets import BostonSafety
from datetime import datetime
from dateutil import parser
end_date = parser.parse('2016-01-01')
start_date = parser.parse('2015-05-01')
safety = BostonSafety(start_date=start_date, end_date=end_date)
safety = safety.to_spark_dataframe()
display(safety)
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "citydatacontainer"
blob_relative_path = "Safety/Release/city=Boston"
blob_sas_token = r""
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
blob_sas_token)
print('Remote blob path: ' + wasbs_path)
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))

City Safety
From the Urban Innovation Initiative at Microsoft Research, databricks notebook for analytics with safety data (311 and 911 call data) from major U.S. cities. Analyses show frequency distributions and geographic clustering of safety issues within cities.