Ignorar navegação

Harmonized Landsat Sentinel-2

SatelliteImagery EarthObservation AIforEarth NASA ESA

Imagens dos satélites Landsat-8 e Sentinel-2 para a América do Norte.

O produto HLS (Harmonized Landsat Sentinel-2) inclui dados dos satélites Landsat-8 e Sentinel-2 alinhados a um sistema de blocos comum com 30 m de resolução, de 2013 ao presente para o Landsat e de 2015 ao presente para o Sentinel-2. O HLS é administrado pela NASA (Administração Nacional da Aeronáutica e Espaço).

Este conjunto de dados é mantido pela Ag-Analytics®. A Ag-Analytics® também fornece uma API que aceita um polígono de AOI (área de interesse), um intervalo de datas e outras opções, além de retornar imagens processadas de bandas MSI individuais, o Índice de Vegetação da Diferença Normalizado e outras métricas e os mosaicos filtrados por nuvem.

O conjunto de dados é atualizado semanalmente.

Recursos de Armazenamento

Os dados são armazenados em blobs no data center da região Leste dos EUA 2, no seguinte contêiner de blob:

https://hlssa.blob.core.windows.net/hls

Nesse contêiner, os dados são organizados de acordo com:

<folder>/HLS.<product>.T<tileid>.<daynum>.<version>_<subdataset>.tif

  • folder é L309 no Landsat e S309 no Sentinel-2
  • product é L30 no Landsat e S30 no Sentinel-2
  • tileid é um código de bloco de quatro caracteres do sistema de blocos do Sentinel-2
  • daynum é um ano com quatro dígitos mais um dia do ano com três dígitos (de 001 a 365); por exemplo, 2019001 representa 1º de janeiro de 2019
  • version é sempre v1.4
  • subdataset é uma cadeia de caracteres de dois caracteres e índice 1 que indica um subconjunto de dados (veja abaixo)

Um mapeamento de latitude/longitude nas IDs de bloco pode ser encontrado aqui; o notebook fornecido em “Acesso a dados” demonstra o uso dessa tabela para procurar a ID do bloco por latitude/longitude. As IDs de bloco também podem ser encontradas usando a API da Ag-Analytics®.

Os dados são fornecidos para os seguintes blocos primários:

[‘10 U’,‘11 U’,‘12 U’,‘13 U’,‘14 U’,‘15 U’,‘16 U’,‘10 T’,‘11 T’,‘12 T’,‘13 T’,‘14 T’,‘15 T’,‘16 T’,‘17 T’,‘18 T’,‘19 T’,‘10 S’,‘11 S’,‘12 S’,‘13 S’,‘14 S’,‘15 S’,‘16 S’,‘17 S’,‘18 S’,‘12 R’,‘13 R’,‘14 R’,‘15 R’,‘16 R’,‘17 R’]

As bandas são as seguintes:

Nome da banda Número da banda OLI Número da banda MSI L30 subdatasetnumber S30 subdatasetnumber
Aerossol costeiro 1 1 01 01
Azul 2 2 02 02
Verde 3 3 03 03
Vermelho 4 4 04 04
Red-edge 1 5 05
Red-edge 2 6 06
Red-edge 3 7 07
NIR amplo 8 08
NIR estreito 5 8A 05 09
SWIR 1 6 11 06 10
SWIR 2 7 12 07 11
Vapor de água 9 12
Cirro 9 10 08 13
Infravermelho térmico 1 10 09
Infravermelho térmico 2 11 10
QA 11 14

Por exemplo, o nome de arquivo HLS.S30.T16TDL.2019206.v1.4_01.tif estaria localizado em https://hlssa.blob.core.windows.net/hls/S309/HLS.S30.T16TDL.2019206.v1.4_03.tif e representaria os dados HLS do Sentinel-2 (S30) para o bloco 16TDL (bloco primário 16T, sub-bloco DL) para a banda 03 do conjunto de dados (Banda MSI 3, verde) para o 206º dia de 2019.

Também fornecemos um token SAS somente leitura (assinatura de acesso compartilhado) para permitir acesso aos dados HLS via, por exemplo, o BlobFuse, que permite montar contêineres de blob como unidades:

st=2019-08-07T14%3A54%3A43Z&se=2050-08-08T14%3A54%3A00Z&sp=rl&sv=2018-03-28&sr=c&sig=EYNJCexDl5yxb1TxNH%2FzILznc3TiAnJq%2FPvCumkuV5U%3D

As instruções de montagem para o Linux podem ser encontradas aqui.

Os dados HLS podem consumir centenas de terabytes, então o processamento de grande escala é mais bem desempenhado no data center do Azure do Leste dos EUA 2, em que as imagens estão armazenadas. Se você estiver usando os dados HLS para aplicativos de ciência ambiental, considere se inscrever em uma concessão do AI for Earth para dar suporte à compatibilidade com seus requisitos de computação.

Contact

Para perguntas sobre este conjunto de dados, entre em contato com aiforearthdatasets@microsoft.com.

Avisos

A MICROSOFT FORNECE O AZURE OPEN DATASETS NO ESTADO EM QUE SE ENCONTRA. A MICROSOFT NÃO OFERECE GARANTIAS OU COBERTURAS, EXPRESSAS OU IMPLÍCITAS, EM RELAÇÃO AO USO DOS CONJUNTOS DE DADOS. ATÉ O LIMITE PERMITIDO PELA LEGISLAÇÃO LOCAL, A MICROSOFT SE EXIME DE TODA A RESPONSABILIDADE POR DANOS OU PERDAS, INCLUSIVE DIRETOS, CONSEQUENTES, ESPECIAIS, INDIRETOS, ACIDENTAIS OU PUNITIVOS, RESULTANTES DO USO DOS CONJUNTOS DE DADOS.

Esse conjunto de dados é fornecido de acordo com os termos originais com que a Microsoft recebeu os dados de origem. O conjunto de dados pode incluir dados originados da Microsoft.

Access

Available inWhen to use
Azure Notebooks

Quickly explore the dataset with Jupyter notebooks hosted on Azure or your local machine.

Select your preferred service:

Azure Notebooks

Azure Notebooks

Package: Language: Python

Demo notebook for accessing HLS data on Azure

This notebook provides an example of accessing HLS (Harmonized Landsat Sentinel-2) data from blob storage on Azure, extracting image metadata using GDAL, and displaying an image using GDAL and rasterio.

HLS data are stored in the East US 2 data center, so this notebook will run more efficiently on the Azure compute located in East US 2. You don't want to download hundreds of terabytes to your laptop! If you are using HLS data for environmental science applications, consider applying for an AI for Earth grant to support your compute requirements.

HLS data on Azure are managed by Ag-Analytics. Ag-Analytics also provides an API which allows the caller to query to perform spatial queries over the HLS archive, as well as querying for additional data such as cloud cover and Normalized Difference Vegetation Index (NDVI). Ag-Analytics also provides an API to retrieve tile IDs matching spatial queries.

Imports and environment

In [2]:
# Standard-ish packages
import requests
import re
import numpy as np
import urllib
import io
import matplotlib.pyplot as plt
import pandas as pd

# Less standard, but all of the following are pip- or conda-installable
import rasterio

# pip install azure-storage-blob
from azure.storage.blob import ContainerClient

from osgeo import gdal,osr

# Storage locations are documented at http://aka.ms/ai4edata-hls
hls_container_name = 'hls'
hls_account_name = 'hlssa'
hls_account_url = 'https://' + hls_account_name + '.blob.core.windows.net/'
hls_blob_root = hls_account_url + hls_container_name

# This file is provided by NASA; it indicates the lat/lon extents of each
# hls tile.
#
# The file originally comes from:
#
# https://hls.gsfc.nasa.gov/wp-content/uploads/2016/10/S2_TilingSystem2-1.txt
#
# ...but as of 8/2019, there is a bug with the column names in the original file, so we
# access a copy with corrected column names.
hls_tile_extents_url = 'https://ai4edatasetspublicassets.blob.core.windows.net/assets/S2_TilingSystem2-1.txt?st=2019-08-23T03%3A25%3A57Z&se=2028-08-24T03%3A25%3A00Z&sp=rl&sv=2018-03-28&sr=b&sig=KHNZHIJuVG2KqwpnlsJ8truIT5saih8KrVj3f45ABKY%3D'

# Load this file into a table, where each row is:
#
# Tile ID, Xstart, Ystart, UZ, EPSG, MinLon, MaxLon, MinLon, MaxLon
print('Reading tile extents...')
s = requests.get(hls_tile_extents_url).content
hls_tile_extents = pd.read_csv(io.StringIO(s.decode('utf-8')),delimiter=r'\s+')
print('Read tile extents for {} tiles'.format(len(hls_tile_extents)))

# Read-only shared access signature (SAS) URL for the hls container
hls_sas_token = 'st=2019-08-07T14%3A54%3A43Z&se=2050-08-08T14%3A54%3A00Z&sp=rl&sv=2018-03-28&sr=c&sig=EYNJCexDl5yxb1TxNH%2FzILznc3TiAnJq%2FPvCumkuV5U%3D'

hls_container_client = ContainerClient(account_url=hls_account_url, 
                                         container_name=hls_container_name,
                                         credential=None)
                                

%matplotlib inline
Reading tile extents...
Read tile extents for 56686 tiles

Functions

In [3]:
def get_hls_tile(blob_url):
    """
    Given a URL pointing to an HLS image in blob storage, load that image via GDAL
    and return both data and metadata.
    """    
    
    formatted_gdal_bloburl='/{}/{}'.format('vsicurl',blob_url)
    
    tile_open = gdal.Open(formatted_gdal_bloburl)
    data = tile_open.GetRasterBand(1)
    ndv,xsize,ysize = data.GetNoDataValue(),tile_open.RasterXSize,tile_open.RasterYSize
    
    projection = osr.SpatialReference()
    projection.ImportFromWkt(tile_open.GetProjectionRef())
    
    datatype = data.DataType
    datatype = gdal.GetDataTypeName(datatype)  
    data_array = data.ReadAsArray()

    return ndv,xsize,ysize,projection,data_array


def list_available_tiles(prefix):
    """
    List all blobs in an Azure blob container matching a prefix.  
    
    We'll use this to query tiles by location and year.
    """
    
    files = []
    generator = hls_container_client.list_blobs(name_starts_with=prefix)
    for blob in generator:
        files.append(blob.name)
    return files

    
def lat_lon_to_hls_tile_id(lat,lon):
    """
    Get the hls tile ID for a given lat/lon coordinate pair
    """  
    
    found_matching_tile = False

    for i_row,row in hls_tile_extents.iterrows():
        found_matching_tile = lat >= row.MinLat and lat <= row.MaxLat \
        and lon >= row.MinLon and lon <= row.MaxLon
        if found_matching_tile:
            break
    
    if not found_matching_tile:
        return None
    else:
        return row.TilID

Find a tile for a given location and date

In [4]:
# Specify a location and year of interest
lat = 47.6101; lon = -122.2015 # Bellevue, WA

year = '2019'
daynum = '109'    # 1-indexed day-of-year
folder = 'S309'   # 'S309' for Sentinel, 'L309' for Landsat
product = 'S30'   # 'S30' for Sentinel, 'L30' for Landsat
year = '2019'

tile_id = lat_lon_to_hls_tile_id(lat,lon)
assert tile_id is not None, 'Invalid lat/lon'
prefix = folder + '/HLS.' + product + '.T' + tile_id + '.' + year

print('Finding tiles with prefix {}'.format(prefix))
matches = list_available_tiles(prefix)
assert len(matches) > 0, 'No matching tiles'

blob_name = matches[0]
print('Found {} matching tiles, using file {}'.format(len(matches),blob_name))
Finding tiles with prefix S309/HLS.S30.T10TET.2019
Found 1918 matching tiles, using file S309/HLS.S30.T10TET.2019001.v1.4_01.tif

...or build a tile path from components

In [5]:
lat = 47.6101; lon = -122.2015 # Bellevue, WA

year    = '2019'
daynum  = '001'   # 1-indexed day-of-year
folder  = 'S309'  # 'S309' for Sentinel, 'L309' for Landsat
product = 'S30'   # 'S30' for Sentinel, 'L30' for Landsat
band    = '01'
tile_id = '10TET' # See hls.gsfc.nasa.gov/wp-content/uploads/2016/10/S2_TilingSystem2-1.txt
version = 'v1.4'  # Currently always v1.4

blob_name = folder + '/HLS.' + product + '.T' + tile_id + '.' + year + daynum + '.' + version \
    + '_' + band + '.tif'

print('Using file {}'.format(blob_name))
Using file S309/HLS.S30.T10TET.2019001.v1.4_01.tif

Access one band of the selected image using GDAL's virtual file system (vsicurl)

In [6]:
gdal.SetConfigOption('GDAL_HTTP_UNSAFESSL', 'YES')
blob_url = hls_blob_root + '/' + blob_name
print('Reading tile from {}'.format(blob_url))
ndv,xsize,ysize,projection,data_array = get_hls_tile(blob_url)

print('No-data value: {}'.format(ndv))
print('\nSize: {},{}'.format(xsize,ysize))
print('\nProjection:\n{}'.format(projection))
Reading tile from https://hlssa.blob.core.windows.net/hls/S309/HLS.S30.T10TET.2019001.v1.4_01.tif
No-data value: -1000.0

Size: 3660,3660

Projection:
PROJCS["UTM Zone 10, Northern Hemisphere",
    GEOGCS["Unknown datum based upon the WGS 84 ellipsoid",
        DATUM["Not_specified_based_on_WGS_84_spheroid",
            SPHEROID["WGS 84",6378137,298.257223563,
                AUTHORITY["EPSG","7030"]]],
        PRIMEM["Greenwich",0],
        UNIT["degree",0.0174532925199433]],
    PROJECTION["Transverse_Mercator"],
    PARAMETER["latitude_of_origin",0],
    PARAMETER["central_meridian",-123],
    PARAMETER["scale_factor",0.9996],
    PARAMETER["false_easting",500000],
    PARAMETER["false_northing",0],
    UNIT["metre",1,
        AUTHORITY["EPSG","9001"]]]

Display a Sentinel-2 image using rasterio and vsicurl

In [7]:
# Bands 2, 3, and 4 are B, G, and R in Sentinel-2 HLS images

base_url = '/vsicurl/' + hls_blob_root + '/' + blob_name
band2_url = re.sub('_(\d+).tif','_02.tif',base_url)
band3_url = re.sub('_(\d+).tif','_03.tif',base_url)
band4_url = re.sub('_(\d+).tif','_04.tif',base_url)
print('Reading bands from:\n{}\n{}\n{}'.format(band2_url,band3_url,band4_url))

band2 = rasterio.open(band2_url)
band3 = rasterio.open(band3_url)
band4 = rasterio.open(band4_url)

norm_value = 2000
image_data = []
for band in [band4,band3,band2]:
    band_array = band.read(1)
    band_array = band_array / norm_value
    image_data.append(band_array)
    band.close()

rgb = np.dstack((image_data[0],image_data[1],image_data[2]))
np.clip(rgb,0,1,rgb)
plt.imshow(rgb)
Reading bands from:
/vsicurl/https://hlssa.blob.core.windows.net/hls/S309/HLS.S30.T10TET.2019001.v1.4_02.tif
/vsicurl/https://hlssa.blob.core.windows.net/hls/S309/HLS.S30.T10TET.2019001.v1.4_03.tif
/vsicurl/https://hlssa.blob.core.windows.net/hls/S309/HLS.S30.T10TET.2019001.v1.4_04.tif
Out[7]:
<matplotlib.image.AxesImage at 0x2249d8e6f48>