The Azure Quickstart templates are currently available in English

Create Tabular Dataset from Relative Path in Datastore

Última atualização: 12/07/2020

This template creates a tabular dataset from relative path in datastore in Azure Machine Learning workspace.

Este modelo do ARM (Azure Resource Manager) foi criado por um membro da comunidade, e não pela Microsoft. Cada modelo do ARM é licenciado para você de acordo com o contrato de licença de seu proprietário, e não da Microsoft. A Microsoft não é responsável por modelos do ARM fornecidos e licenciado por membros da comunidade e não avalia sua segurança, compatibilidade ou desempenho. Modelos do ARM da comunidade não têm suporte de nenhum programa ou serviço de suporte da Microsoft e são disponibilizados DA FORMA COMO ESTÃO, sem nenhum tipo de garantia.

Parâmetros

Nome do parâmetro Descrição
workspaceName Specifies the name of the Azure Machine Learning workspace which will hold this datastore target.
datasetName The name of the dataset.
datasetDescription Optional : The description for the dataset.
datastoreName The datastore name.
relativePath Path within the datastore
sourceType Data source type
separator Optional: The separator used to split columns for 'delimited_files' sourceType, default to ',' for 'delimited_files'
header Optional : Header type. Defaults to 'all_files_have_same_headers'
partitionFormat Optional : The partition information of each path will be extracted into columns based on the specified format. Format part '{column_name}' creates string column, and '{column_name:yyyy/MM/dd/HH/mm/ss}' creates datetime column, where 'yyyy', 'MM', 'dd', 'HH', 'mm' and 'ss' are used to extract year, month, day, hour, minute and second for the datetime type. The format should start from the position of first partition key until the end of file path. For example, given the path '../USA/2019/01/01/data.parquet' where the partition is by country/region and time, partition_format='/{CountryOrRegion}/{PartitionDate:yyyy/MM/dd}/data.csv' creates a string column'CountryOrRegion' with the value 'USA' and a datetime column 'PartitionDate' with the value '2019-01-01
fineGrainTimestamp Optional : Column name to be used as FineGrainTimestamp
coarseGrainTimestamp Optional : Column name to be used as CoarseGrainTimestamp. Can only be used if 'fineGrainTimestamp' is specified and cannot be same as 'fineGrainTimestamp'.
tags Optional : Provide JSON object with 'key,value' pairs to add as tags on dataset. Example- {"sampleTag1": "tagValue1", "sampleTag2": "tagValue2"}
skipValidation Optional : Skip validation that ensures data can be loaded from the dataset before registration.
includePath Optional : Boolean to keep path information as column in the dataset. Defaults to False. This is useful when reading multiple files, and want to know which file a particular record originated from, or to keep useful information in file path.
location The location of the Azure Machine Learning Workspace.

Usar o modelo

PowerShell

New-AzResourceGroup -Name <resource-group-name> -Location <resource-group-location> #use this command when you need to create a new resource group for your deployment
New-AzResourceGroupDeployment -ResourceGroupName <resource-group-name> -TemplateUri https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/101-machine-learning-dataset-create-tabular-from-relative-path/azuredeploy.json
Instale e configure o PowerShell do Azure

Linha de comando

az group create --name <resource-group-name> --location <resource-group-location> #use this command when you need to create a new resource group for your deployment
az group deployment create --resource-group <my-resource-group> --template-uri https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/101-machine-learning-dataset-create-tabular-from-relative-path/azuredeploy.json
Instalar e configurar a Interface de Linha de Comando de Plataforma Cruzada do Azure