Pomiń nawigację

NYC Taxi & Limousine Commission - For-Hire Vehicle (FHV) trip records

NYC TLC Taxi FHV

Rekordy przejazdów pojazdami na wynajem obejmują pola zawierające numer licencji centrali oraz datę i godzinę odebrania pasażera, jak również identyfikator lokalizacji strefy taksówkowej (plik kształtu poniżej). Te rekordy są generowane na podstawie danych przesyłanych do systemu FHV Trip Record przez centrale.

Ilość danych i przechowywanie

Ten zestaw danych jest przechowywany w formacie Parquet. Obejmuje około 500 milionów wierszy (5 GB) danych (informacja aktualna na rok 2018).

Ten zestaw danych zawiera historyczne rekordy z lat 2009–2018. Aby pobrać dane z konkretnego przedziału czasowego, należy użyć ustawień parametrów w zestawie SDK.

Lokalizacja przechowywania

Ten zestaw danych jest przechowywany w regionie platformy Azure Wschodnie stany USA. Zalecamy przydzielanie zasobów obliczeniowych w regionie Wschodnie stany USA z uwagi na koligację.

Dodatkowe informacje

Komisja ds. taksówek i limuzyn miasta Nowy Jork (TLC):

Dane zostały zebrane i dostarczone do TLC przez dostawców technologii uczestniczących w programach TPEP/LPEP (Taxicab & Livery Passenger Enhancement Program). Dane dotyczące przejazdów nie zostały utworzone przez TLC i komisja nie gwarantuje rzetelności tych danych.

Dodatkowe informacje na temat danych TLC o przewozach można znaleźć tutaj i tutaj.

Uwagi

FIRMA MICROSOFT UDOSTĘPNIA OTWARTE ZESTAWY DANYCH W ICH AKTUALNYM STANIE. FIRMA MICROSOFT NIE UDZIELA ŻADNYCH GWARANCJI, JAWNYCH LUB DOMNIEMANYCH, ANI NIE OKREŚLA ŻADNYCH WARUNKÓW W ODNIESIENIU DO KORZYSTANIA Z ZESTAWÓW DANYCH. W ZAKRESIE DOZWOLONYM PRZEZ PRZEPISY PRAWA LOKALNEGO FIRMA MICROSOFT ZRZEKA SIĘ ODPOWIEDZIALNOŚCI ZA JAKIEKOLWIEK STRATY I SZKODY, W TYM SZKODY BEZPOŚREDNIE, WYNIKOWE, SPECJALNE, POŚREDNIE, PRZYPADKOWE LUB KARNE, WYNIKAJĄCE Z KORZYSTANIA Z TYCH ZESTAWÓW DANYCH.

Zestaw danych jest udostępniany zgodnie z pierwotnymi warunkami, na jakich firma Microsoft otrzymała dane źródłowe. Zestaw danych może zawierać dane pozyskane z firmy Microsoft.

Access

Available inWhen to use
Azure Notebooks

Quickly explore the dataset with Jupyter notebooks hosted on Azure or your local machine.

Azure Databricks

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Azure Synapse

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Preview

dispatchBaseNum pickupDateTime dropOffDateTime puLocationId doLocationId srFlag puYear puMonth
B03157 6/30/2019 11:59:57 PM 7/1/2019 12:07:21 AM 264 null null 2019 6
B01667 6/30/2019 11:59:56 PM 7/1/2019 12:28:06 AM 264 null null 2019 6
B02849 6/30/2019 11:59:55 PM 7/1/2019 12:14:10 AM 264 null null 2019 6
B02249 6/30/2019 11:59:53 PM 7/1/2019 12:15:53 AM 264 null null 2019 6
B00887 6/30/2019 11:59:48 PM 7/1/2019 12:29:29 AM 264 null null 2019 6
B01626 6/30/2019 11:59:45 PM 7/1/2019 12:18:20 AM 264 null null 2019 6
B01259 6/30/2019 11:59:44 PM 7/1/2019 12:03:15 AM 264 null null 2019 6
B01145 6/30/2019 11:59:43 PM 7/1/2019 12:11:15 AM 264 null null 2019 6
B00887 6/30/2019 11:59:42 PM 7/1/2019 12:34:21 AM 264 null null 2019 6
B00821 6/30/2019 11:59:40 PM 7/1/2019 12:02:57 AM 264 null null 2019 6
Name Data type Unique Values (sample) Description
dispatchBaseNum string 1,144 B02510
B02764

Numer licencji TLC bazy, z której wysłano przejazd

doLocationId string 267 265
132

Strefa taksówkowa TLC, w której zakończył się przejazd.

dropOffDateTime timestamp 57,110,352 2017-07-31 23:59:00
2017-10-15 00:44:34

Data i godzina zakończenia przejazdu przez pasażera.

pickupDateTime timestamp 111,270,396 2016-08-16 00:00:00
2016-08-17 00:00:00

Data i godzina rozpoczęcia przejazdu przez pasażera.

puLocationId string 266 79
161

Strefa taksówkowa TLC, w której rozpoczął się przejazd.

puMonth int 12 1
12
puYear int 5 2018
2017
srFlag string 44 1
2

Wskazuje, czy przejazd odbywał się w ramach ciągu wspólnych przejazdów oferowanego przez masowego operatora przewozów pasażerskich (na przykład Uber Pool, Lyft Line). W przypadku wspólnych przejazdów to pole zawiera wartość 1. W przypadku przejazdów, które nie były wspólne, to pole ma wartość null.

UWAGA: W przypadku większości masowych operatorów przewozów pasażerskich oznaczone tą flagą są tylko wspólne przejazdy, które zostały zamówione ORAZ dopasowane do innego zamówienia wspólnego przejazdu w czasie trwania podróży. Jednak firma Lyft (numery licencji bazy: B02510 i B02844) oznacza w ten sposób także zamówione przejazdy wspólne, do których nie udało się dopasować zamówienia innego pasażera — a zatem rekordy przejazdów z oznaczeniem SR_Flag=1 z tych dwóch baz mogą oznaczać pierwszy przejazd w ramach ciągu wspólnych przejazdów LUB przejazd, dla którego zamówiono przejazd wspólny, ale nie dopasowano innego pasażera. Użytkownicy powinni uwzględnić potencjalne przeszacowanie liczby przejazdów wspólnych zrealizowanych przez firmę Lyft.

Select your preferred service:

Azure Notebooks

Azure Databricks

Azure Synapse

Azure Notebooks

Package: Language: Python Python
In [1]:
# This is a package in preview.
from azureml.opendatasets import NycTlcFhv

from datetime import datetime
from dateutil import parser


end_date = parser.parse('2018-06-06')
start_date = parser.parse('2018-05-01')
nyc_tlc = NycTlcFhv(start_date=start_date, end_date=end_date)
nyc_tlc_df = nyc_tlc.to_pandas_dataframe()
ActivityStarted, to_pandas_dataframe ActivityStarted, to_pandas_dataframe_in_worker Target paths: ['/puYear=2018/puMonth=5/', '/puYear=2018/puMonth=6/'] Looking for parquet files... Reading them into Pandas dataframe... Reading fhv/puYear=2018/puMonth=5/part-00087-tid-3759768514304694104-985150ea-1bd1-4f3d-b368-27cbe0c377b0-12952.c000.snappy.parquet under container nyctlc Reading fhv/puYear=2018/puMonth=6/part-00171-tid-3759768514304694104-985150ea-1bd1-4f3d-b368-27cbe0c377b0-13036.c000.snappy.parquet under container nyctlc Done. ActivityCompleted: Activity=to_pandas_dataframe_in_worker, HowEnded=Success, Duration=737522.49 [ms] ActivityCompleted: Activity=to_pandas_dataframe, HowEnded=Success, Duration=737620.1 [ms]
In [2]:
nyc_tlc_df.info()
<class 'pandas.core.frame.DataFrame'> Int64Index: 25142904 entries, 0 to 21089615 Data columns (total 6 columns): dispatchBaseNum object pickupDateTime datetime64[ns] dropOffDateTime datetime64[ns] puLocationId object doLocationId object srFlag object dtypes: datetime64[ns](2), object(4) memory usage: 1.3+ GB
In [1]:
# Pip install packages
import os, sys

!{sys.executable} -m pip install azure-storage-blob
!{sys.executable} -m pip install pyarrow
!{sys.executable} -m pip install pandas
In [2]:
# Azure storage access info
azure_storage_account_name = "azureopendatastorage"
azure_storage_sas_token = r""
container_name = "nyctlc"
folder_name = "fhv"
In [3]:
from azure.storage.blob import BlockBlobServicefrom azure.storage.blob import BlobServiceClient, BlobClient, ContainerClient

if azure_storage_account_name is None or azure_storage_sas_token is None:
    raise Exception(
        "Provide your specific name and key for your Azure Storage account--see the Prerequisites section earlier.")

print('Looking for the first parquet under the folder ' +
      folder_name + ' in container "' + container_name + '"...')
container_url = f"https://{azure_storage_account_name}.blob.core.windows.net/"
blob_service_client = BlobServiceClient(
    container_url, azure_storage_sas_token if azure_storage_sas_token else None)

container_client = blob_service_client.get_container_client(container_name)
blobs = container_client.list_blobs(folder_name)
sorted_blobs = sorted(list(blobs), key=lambda e: e.name, reverse=True)
targetBlobName = ''
for blob in sorted_blobs:
    if blob.name.startswith(folder_name) and blob.name.endswith('.parquet'):
        targetBlobName = blob.name
        break

print('Target blob to download: ' + targetBlobName)
_, filename = os.path.split(targetBlobName)
blob_client = container_client.get_blob_client(targetBlobName)
with open(filename, 'wb') as local_file:
    blob_client.download_blob().download_to_stream(local_file)
In [4]:
# Read the parquet file into Pandas data frame
import pandas as pd

print('Reading the parquet file into Pandas data frame')
df = pd.read_parquet(filename)
In [5]:
# you can add your filter at below
print('Loaded as a Pandas data frame: ')
df
In [6]:
 

Azure Databricks

Package: Language: Python Python
In [1]:
# This is a package in preview.
# You need to pip install azureml-opendatasets in Databricks cluster. https://docs.microsoft.com/en-us/azure/data-explorer/connect-from-databricks#install-the-python-library-on-your-azure-databricks-cluster
from azureml.opendatasets import NycTlcFhv

from datetime import datetime
from dateutil import parser


end_date = parser.parse('2018-06-06')
start_date = parser.parse('2018-05-01')
nyc_tlc = NycTlcFhv(start_date=start_date, end_date=end_date)
nyc_tlc_df = nyc_tlc.to_spark_dataframe()
ActivityStarted, to_spark_dataframe ActivityStarted, to_spark_dataframe_in_worker ActivityCompleted: Activity=to_spark_dataframe_in_worker, HowEnded=Success, Duration=27284.71 [ms] ActivityCompleted: Activity=to_spark_dataframe, HowEnded=Success, Duration=27288.78 [ms]
In [2]:
display(nyc_tlc_df.limit(5))
dispatchBaseNumpickupDateTimedropOffDateTimepuLocationIddoLocationIdsrFlagpuYearpuMonth
B028002018-05-08T13:31:30.000+00002018-05-08T13:57:23.000+000042237120185
B028002018-05-08T13:31:30.000+00002018-05-08T13:48:36.000+000033261null20185
B028002018-05-08T13:31:38.000+00002018-05-08T13:59:23.000+000016497120185
B028002018-05-08T13:31:41.000+00002018-05-08T13:38:35.000+0000144211120185
B028002018-05-08T13:31:43.000+00002018-05-08T13:44:23.000+000018648120185
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "nyctlc"
blob_relative_path = "fhv"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))

Azure Synapse

Package: Language: Python Python
In [29]:
# This is a package in preview.
from azureml.opendatasets import NycTlcFhv

from datetime import datetime
from dateutil import parser


end_date = parser.parse('2018-06-06')
start_date = parser.parse('2018-05-01')
nyc_tlc = NycTlcFhv(start_date=start_date, end_date=end_date)
nyc_tlc_df = nyc_tlc.to_spark_dataframe()
In [30]:
# Display top 5 rows
display(nyc_tlc_df.limit(5))
Out[30]:
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "nyctlc"
blob_relative_path = "fhv"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))