Navigatie overslaan

US Producer Price Index - Commodities

labor statistics ppi commodity

De Producer Price Index (PPI) is een meting van de gemiddelde wijziging gedurende een bepaalde periode in de verkoopprijzen die nationale producenten ontvangen voor hun uitvoer. De prijzen die in de PPI zijn opgenomen, zijn afkomstig van de eerste commerciële transactie voor de betreffende producten en services.

Elke maand worden er ongeveer 10.000 PPI’s gepubliceerd voor afzonderlijke producten en groepen producten. Er zijn PPI’s beschikbaar voor de uitvoer van bijna alle bedrijfstakken in de sectoren die goederen produceren in de economie van de V.S.: mijnbouw, productie, landbouw, visserij en bosbouw, evenals aardgas, elektriciteit, bouwnijverheid, en goederen die concurrerend zijn met goederen die worden gemaakt in de producerende sectoren, zoals afval en schroot. Het PPI-programma bestrijkt ongeveer 72 procent van de uitvoer van de dienstverlenende sector zoals deze is gemeten op basis van de omzet die is vermeld in de telling van economische activiteiten van 2007. De gegevens omvatten bedrijfstakken in de volgende sectoren: groot- en kleinhandel, transport en opslag, informatie, financiën en verzekeringen, makelaardij, verhuur en leasing, professionele, wetenschappelijke en technische dienstverlening, dienstverlening met betrekking tot administratie, ondersteuning en afvalbeheer, gezondheidszorg en sociale dienstverlening, en huisvesting.

LEESMIJ met bestand voor gedetailleerde informatie over deze gegevensset is beschikbaar op de oorspronkelijke locatie van de gegevensset. Aanvullende informatie is beschikbaar in de Veelgestelde vragen.

Deze gegevensset wordt geleverd uit de Producer Price Indexes-gegevens gepubliceerd door US Bureau of Labor Statistics (BLS). Lees Informatie over koppelingen en auteursrechten en Belangrijke websitemededelingen voor de voorwaarden met betrekking tot het gebruik van deze gegevensset.

Opslaglocatie

Deze gegevensset wordt opgeslagen in de Azure-regio US - oost. Het wordt aanbevolen om rekenresources in US - oost toe te wijzen voor affiniteit.

Gerelateerde gegevenssets

Mededelingen

AZURE OPEN GEGEVENSSETS WORDEN DOOR MICROSOFT ONGEWIJZIGD GELEVERD. MICROSOFT GEEFT GEEN GARANTIES, EXPLICIET OF IMPLICIET, ZEKERHEDEN OF VOORWAARDEN MET BETREKKING TOT HET GEBRUIK VAN DE GEGEVENSSETS. VOOR ZOVER IS TOEGESTAAN ONDER HET TOEPASSELIJKE RECHT, WIJST MICROSOFT ALLE AANSPRAKELIJKHEID AF VOOR SCHADE OF VERLIEZEN, WAARONDER GEVOLGSCHADE OF DIRECTE, SPECIALE, INDIRECTE, INCIDENTELE OF PUNITIEVE SCHADE DIE VOORTVLOEIT UIT HET GEBRUIK VAN DE GEGEVENSSETS.

Deze gegevensset wordt geleverd onder de oorspronkelijke voorwaarden dat Microsoft de brongegevens heeft ontvangen. De gegevensset kan gegevens bevatten die afkomstig zijn van Microsoft.

Access

Available inWhen to use
Azure Notebooks

Quickly explore the dataset with Jupyter notebooks hosted on Azure or your local machine.

Azure Databricks

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Azure Synapse

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Preview

item_code group_code series_id year period value footnote_codes seasonal series_title group_name item_name
120922 05 WPU05120922 2008 M06 100 nan U PPI Commodity data for Fuels and related products and power-Prepared bituminous coal underground mine, mechanically crushed/screened/sized only, not seasonally adjusted Fuels and related products and power Prepared bituminous coal underground mine, mechanically crushed/screened/sized only
120922 05 WPU05120922 2008 M07 104.6 nan U PPI Commodity data for Fuels and related products and power-Prepared bituminous coal underground mine, mechanically crushed/screened/sized only, not seasonally adjusted Fuels and related products and power Prepared bituminous coal underground mine, mechanically crushed/screened/sized only
120922 05 WPU05120922 2008 M08 104.4 nan U PPI Commodity data for Fuels and related products and power-Prepared bituminous coal underground mine, mechanically crushed/screened/sized only, not seasonally adjusted Fuels and related products and power Prepared bituminous coal underground mine, mechanically crushed/screened/sized only
120922 05 WPU05120922 2008 M09 98.3 nan U PPI Commodity data for Fuels and related products and power-Prepared bituminous coal underground mine, mechanically crushed/screened/sized only, not seasonally adjusted Fuels and related products and power Prepared bituminous coal underground mine, mechanically crushed/screened/sized only
120922 05 WPU05120922 2008 M10 101.5 nan U PPI Commodity data for Fuels and related products and power-Prepared bituminous coal underground mine, mechanically crushed/screened/sized only, not seasonally adjusted Fuels and related products and power Prepared bituminous coal underground mine, mechanically crushed/screened/sized only
120922 05 WPU05120922 2008 M11 95.2 nan U PPI Commodity data for Fuels and related products and power-Prepared bituminous coal underground mine, mechanically crushed/screened/sized only, not seasonally adjusted Fuels and related products and power Prepared bituminous coal underground mine, mechanically crushed/screened/sized only
120922 05 WPU05120922 2008 M12 96.7 nan U PPI Commodity data for Fuels and related products and power-Prepared bituminous coal underground mine, mechanically crushed/screened/sized only, not seasonally adjusted Fuels and related products and power Prepared bituminous coal underground mine, mechanically crushed/screened/sized only
120922 05 WPU05120922 2009 M01 104.2 nan U PPI Commodity data for Fuels and related products and power-Prepared bituminous coal underground mine, mechanically crushed/screened/sized only, not seasonally adjusted Fuels and related products and power Prepared bituminous coal underground mine, mechanically crushed/screened/sized only
120922 05 WPU05120922 2009 M02 113.2 nan U PPI Commodity data for Fuels and related products and power-Prepared bituminous coal underground mine, mechanically crushed/screened/sized only, not seasonally adjusted Fuels and related products and power Prepared bituminous coal underground mine, mechanically crushed/screened/sized only
120922 05 WPU05120922 2009 M03 121 nan U PPI Commodity data for Fuels and related products and power-Prepared bituminous coal underground mine, mechanically crushed/screened/sized only, not seasonally adjusted Fuels and related products and power Prepared bituminous coal underground mine, mechanically crushed/screened/sized only
Name Data type Unique Values (sample) Description
footnote_codes string 3 nan
P

Geeft de voetnoten voor de gegevensreeks aan. De meeste waarden zijn null. Zie https://download.bls.gov/pub/time.series/wp/wp.footnote.

group_code string 56 02
01

Code die de belangrijkste productengroep aangeeft waarvoor de index geldt. Zie https://download.bls.gov/pub/time.series/wp/wp.group voor groepscodes en -namen.

group_name string 56 Processed foods and feeds
Farm products

De naam van de belangrijkste basisgroep waarvoor de index geldt. Zie https://download.bls.gov/pub/time.series/wp/wp.group voor groepscodes en -namen.

item_code string 2,949 1
11

Geeft het item aan waarop de gegevensobservaties betrekking hebben. Zie https://download.bls.gov/pub/time.series/wp/wp.item voor artikelcodes en -namen.

item_name string 3,410 Warehousing, storage, and related services
Security guard services

De volledige namen van de items. Zie https://download.bls.gov/pub/time.series/wp/wp.item voor artikelcodes en -namen.

period string 13 M06
M07

Geeft de periode aan waarvoor de gegevens worden geobserveerd. Zie https://download.bls.gov/pub/time.series/wp/wp.period voor lijst met periodewaarden.

seasonal string 2 U
S

Code die aangeeft of de gegevens zijn aangepast aan het seizoen. S=Seasonally Adjusted (aangepast aan het seizoen) U=Unadjusted (niet aangepast)

series_id string 5,458 WPU601
WPU041

Code die de specifieke reeks aangeeft. Een tijdreeks verwijst naar een verzameling gegevens die zijn geobserveerd gedurende een langere periode met consistente tijdsintervallen. Zie https://download.bls.gov/pub/time.series/wp/wp.series voor details van reeksen zoals code, naam, begin- en eindjaar, enz.

series_title string 4,379 PPI Commodity data for Metal treatment services, not seasonally adjusted
PPI Commodity data for Mining services, not seasonally adjusted

Titel van de specifieke reeks. Een tijdreeks verwijst naar een verzameling gegevens die zijn geobserveerd gedurende een langere periode met consistente tijdsintervallen. Zie https://download.bls.gov/pub/time.series/wp/wp.series voor details van reeksen zoals id, naam, begin- en eindjaar, enz.

value float 6,788 100.0
99.0999984741211

Prijsindex voor artikel.

year int 26 2018
2017

Geeft het jaar van de observatie aan.

Select your preferred service:

Azure Notebooks

Azure Databricks

Azure Synapse

Azure Notebooks

Package: Language: Python Python
In [1]:
# This is a package in preview.
from azureml.opendatasets import UsLaborPPICommodity

labor = UsLaborPPICommodity()
labor_df = labor.to_pandas_dataframe()
ActivityStarted, to_pandas_dataframe
ActivityStarted, to_pandas_dataframe_in_worker
Looking for parquet files...
Reading them into Pandas dataframe...
Reading ppi_commodity/part-00000-tid-160579496407747812-077bf440-b39a-4520-9373-0a3f021dd59e-5654-1-c000.snappy.parquet under container laborstatisticscontainer
Done.
ActivityCompleted: Activity=to_pandas_dataframe_in_worker, HowEnded=Success, Duration=20409.23 [ms]
ActivityCompleted: Activity=to_pandas_dataframe, HowEnded=Success, Duration=20434.79 [ms]
In [2]:
labor_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6825676 entries, 0 to 6825675
Data columns (total 11 columns):
item_code         object
group_code        object
series_id         object
year              int32
period            object
value             float32
footnote_codes    object
seasonal          object
series_title      object
group_name        object
item_name         object
dtypes: float32(1), int32(1), object(9)
memory usage: 520.8+ MB
In [1]:
# Pip install packages
import os, sys

!{sys.executable} -m pip install azure-storage-blob
!{sys.executable} -m pip install pyarrow
!{sys.executable} -m pip install pandas
In [2]:
# Azure storage access info
azure_storage_account_name = "azureopendatastorage"
azure_storage_sas_token = r""
container_name = "laborstatisticscontainer"
folder_name = "ppi_commodity/"
In [3]:
from azure.storage.blob import BlockBlobServicefrom azure.storage.blob import BlobServiceClient, BlobClient, ContainerClient

if azure_storage_account_name is None or azure_storage_sas_token is None:
    raise Exception(
        "Provide your specific name and key for your Azure Storage account--see the Prerequisites section earlier.")

print('Looking for the first parquet under the folder ' +
      folder_name + ' in container "' + container_name + '"...')
container_url = f"https://{azure_storage_account_name}.blob.core.windows.net/"
blob_service_client = BlobServiceClient(
    container_url, azure_storage_sas_token if azure_storage_sas_token else None)

container_client = blob_service_client.get_container_client(container_name)
blobs = container_client.list_blobs(folder_name)
sorted_blobs = sorted(list(blobs), key=lambda e: e.name, reverse=True)
targetBlobName = ''
for blob in sorted_blobs:
    if blob.name.startswith(folder_name) and blob.name.endswith('.parquet'):
        targetBlobName = blob.name
        break

print('Target blob to download: ' + targetBlobName)
_, filename = os.path.split(targetBlobName)
blob_client = container_client.get_blob_client(targetBlobName)
with open(filename, 'wb') as local_file:
    blob_client.download_blob().download_to_stream(local_file)
In [4]:
# Read the parquet file into Pandas data frame
import pandas as pd

print('Reading the parquet file into Pandas data frame')
df = pd.read_parquet(filename)
In [5]:
# you can add your filter at below
print('Loaded as a Pandas data frame: ')
df
In [6]:
 

Azure Databricks

Package: Language: Python Python
In [1]:
# This is a package in preview.
from azureml.opendatasets import UsLaborPPICommodity

labor = UsLaborPPICommodity()
labor_df = labor.to_spark_dataframe()
ActivityStarted, to_spark_dataframe ActivityStarted, to_spark_dataframe_in_worker ActivityCompleted: Activity=to_spark_dataframe_in_worker, HowEnded=Success, Duration=2871.21 [ms] ActivityCompleted: Activity=to_spark_dataframe, HowEnded=Success, Duration=2875.06 [ms]
In [2]:
display(labor_df.limit(5))
item_codegroup_codeseries_idyearperiodvaluefootnote_codesseasonalseries_titlegroup_nameitem_name
12092205WPU05120922 2008M06100.0nanUPPI Commodity data for Fuels and related products and power-Prepared bituminous coal underground mine, mechanically crushed/screened/sized only, not seasonally adjustedFuels and related products and powerPrepared bituminous coal underground mine, mechanically crushed/screened/sized only
12092205WPU05120922 2008M07104.6nanUPPI Commodity data for Fuels and related products and power-Prepared bituminous coal underground mine, mechanically crushed/screened/sized only, not seasonally adjustedFuels and related products and powerPrepared bituminous coal underground mine, mechanically crushed/screened/sized only
12092205WPU05120922 2008M08104.4nanUPPI Commodity data for Fuels and related products and power-Prepared bituminous coal underground mine, mechanically crushed/screened/sized only, not seasonally adjustedFuels and related products and powerPrepared bituminous coal underground mine, mechanically crushed/screened/sized only
12092205WPU05120922 2008M0998.3nanUPPI Commodity data for Fuels and related products and power-Prepared bituminous coal underground mine, mechanically crushed/screened/sized only, not seasonally adjustedFuels and related products and powerPrepared bituminous coal underground mine, mechanically crushed/screened/sized only
12092205WPU05120922 2008M10101.5nanUPPI Commodity data for Fuels and related products and power-Prepared bituminous coal underground mine, mechanically crushed/screened/sized only, not seasonally adjustedFuels and related products and powerPrepared bituminous coal underground mine, mechanically crushed/screened/sized only
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "laborstatisticscontainer"
blob_relative_path = "ppi_commodity/"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))

Azure Synapse

Package: Language: Python
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "laborstatisticscontainer"
blob_relative_path = "ppi_commodity/"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))