Navigatie overslaan

US Local Area Unemployment Statistics

labor statistics local area unemployment

Het LAUS-programma (Local Area Unemployment Statistics) levert maandelijkse en jaarlijkse gegevens over de werkgelegenheid, werkeloosheid en beroepsbevolking voor volkstellingsregio’s en -afdelingen, staten, districten, grootstedelijke gebieden en vele steden in de Verenigde Staten.

LEESMIJ met bestand voor gedetailleerde informatie over deze gegevensset is beschikbaar op de oorspronkelijke locatie van de gegevensset.

Deze gegevensset is afkomstig uit gegevens van de Local Area Unemployment Statistics (werkeloosheidsstatistieken voor lokale gebieden) gepubliceerd door US Bureau of Labor Statistics (BLS). Lees Informatie over koppelingen en auteursrechten en Belangrijke websitemededelingen voor de voorwaarden met betrekking tot het gebruik van deze gegevensset.

Opslaglocatie

Deze gegevensset wordt opgeslagen in de Azure-regio US - oost. Het wordt aanbevolen om rekenresources in US - oost toe te wijzen voor affiniteit.

Gerelateerde gegevenssets

Mededelingen

AZURE OPEN GEGEVENSSETS WORDEN DOOR MICROSOFT ONGEWIJZIGD GELEVERD. MICROSOFT GEEFT GEEN GARANTIES, EXPLICIET OF IMPLICIET, ZEKERHEDEN OF VOORWAARDEN MET BETREKKING TOT HET GEBRUIK VAN DE GEGEVENSSETS. VOOR ZOVER IS TOEGESTAAN ONDER HET TOEPASSELIJKE RECHT, WIJST MICROSOFT ALLE AANSPRAKELIJKHEID AF VOOR SCHADE OF VERLIEZEN, WAARONDER GEVOLGSCHADE OF DIRECTE, SPECIALE, INDIRECTE, INCIDENTELE OF PUNITIEVE SCHADE DIE VOORTVLOEIT UIT HET GEBRUIK VAN DE GEGEVENSSETS.

Deze gegevensset wordt geleverd onder de oorspronkelijke voorwaarden dat Microsoft de brongegevens heeft ontvangen. De gegevensset kan gegevens bevatten die afkomstig zijn van Microsoft.

Access

Available inWhen to use
Azure Notebooks

Quickly explore the dataset with Jupyter notebooks hosted on Azure or your local machine.

Azure Databricks

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Azure Synapse

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Preview

area_code area_type_code srd_code measure_code series_id year period value footnote_codes seasonal series_title measure_text srd_text areatype_text area_text
CA3653200000000 E 36 3 LAUCA365320000000003 2000 M01 4.7 nan U Unemployment Rate: Syracuse-Auburn, NY Combined Statistical Area (U) unemployment rate New York Combined areas Syracuse-Auburn, NY Combined Statistical Area
CA3653200000000 E 36 3 LAUCA365320000000003 2000 M02 4.7 nan U Unemployment Rate: Syracuse-Auburn, NY Combined Statistical Area (U) unemployment rate New York Combined areas Syracuse-Auburn, NY Combined Statistical Area
CA3653200000000 E 36 3 LAUCA365320000000003 2000 M03 4.2 nan U Unemployment Rate: Syracuse-Auburn, NY Combined Statistical Area (U) unemployment rate New York Combined areas Syracuse-Auburn, NY Combined Statistical Area
CA3653200000000 E 36 3 LAUCA365320000000003 2000 M04 3.6 nan U Unemployment Rate: Syracuse-Auburn, NY Combined Statistical Area (U) unemployment rate New York Combined areas Syracuse-Auburn, NY Combined Statistical Area
CA3653200000000 E 36 3 LAUCA365320000000003 2000 M05 3.6 nan U Unemployment Rate: Syracuse-Auburn, NY Combined Statistical Area (U) unemployment rate New York Combined areas Syracuse-Auburn, NY Combined Statistical Area
CA3653200000000 E 36 3 LAUCA365320000000003 2000 M06 3.6 nan U Unemployment Rate: Syracuse-Auburn, NY Combined Statistical Area (U) unemployment rate New York Combined areas Syracuse-Auburn, NY Combined Statistical Area
CA3653200000000 E 36 3 LAUCA365320000000003 2000 M07 3.6 nan U Unemployment Rate: Syracuse-Auburn, NY Combined Statistical Area (U) unemployment rate New York Combined areas Syracuse-Auburn, NY Combined Statistical Area
CA3653200000000 E 36 3 LAUCA365320000000003 2000 M08 3.5 nan U Unemployment Rate: Syracuse-Auburn, NY Combined Statistical Area (U) unemployment rate New York Combined areas Syracuse-Auburn, NY Combined Statistical Area
CA3653200000000 E 36 3 LAUCA365320000000003 2000 M09 3.5 nan U Unemployment Rate: Syracuse-Auburn, NY Combined Statistical Area (U) unemployment rate New York Combined areas Syracuse-Auburn, NY Combined Statistical Area
CA3653200000000 E 36 3 LAUCA365320000000003 2000 M10 3.3 nan U Unemployment Rate: Syracuse-Auburn, NY Combined Statistical Area (U) unemployment rate New York Combined areas Syracuse-Auburn, NY Combined Statistical Area
Name Data type Unique Values (sample) Description
area_code string 8,290 ST3400000000000
ST2200000000000

De code waarmee het geografische gebied wordt aangeduid. Zie https://download.bls.gov/pub/time.series/la/la.area.

area_text string 8,238 District of Columbia
Oregon

De naam van het geografische gebied. Zie https://download.bls.gov/pub/time.series/la/la.area

area_type_code string 14 F
G

De unieke code waarmee het gebiedstype wordt gedefinieerd. Zie https://download.bls.gov/pub/time.series/la/la.area_type

areatype_text string 14 Counties and equivalents
Cities and towns above 25,000 population

De naam van het gebiedstype.

footnote_codes string 5 nan
P
measure_code string 4 5
3

De code waarmee het gemeten element wordt aangegeven. 03: werkloosheidscijfer, 04: werkloosheid, 05: werkzaam 06: beroepsbevolking. Zie https://download.bls.gov/pub/time.series/la/la.measure.

measure_text string 4 unemployment rate
labor force

De naam van het gemeten element. Zie https://download.bls.gov/pub/time.series/la/la.measure

period string 13 M07
M05

Hiermee wordt de periode aangegeven, doorgaans de maand. Zie https://download.bls.gov/pub/time.series/la/la.period

seasonal string 2 U
S
series_id string 33,476 LASST160000000000006
LASST200000000000006

De code die de specifieke reeks aangeeft. Zie https://download.bls.gov/pub/time.series/la/la.series voor de complete lijst van reeksen.

series_title string 33,268 Employment: Philadelphia County/city, PA (U)
Labor Force: Manassas city, VA (U)

De titel waarmee de serie wordt geïdentificeerd. Zie https://download.bls.gov/pub/time.series/la/la.series voor de complete lijst van reeksen.

srd_code string 53 48
23

De code van de staat, regio of afdeling.

srd_text string 53 Texas
Maine
value float 600,099 4.0
5.0

De waarde voor de specifieke meting.

year int 44 2009
2008

Select your preferred service:

Azure Notebooks

Azure Databricks

Azure Synapse

Azure Notebooks

Package: Language: Python Python
In [1]:
# This is a package in preview.
from azureml.opendatasets import UsLaborLAUS

usLaborLAUS = UsLaborLAUS()
usLaborLAUS_df = usLaborLAUS.to_pandas_dataframe()
Looking for parquet files... Reading them into Pandas dataframe... Reading laus/part-00000-tid-6506298405389763282-d1280c40-3980-4136-af49-5def25951a63-53767-c000.snappy.parquet under container laborstatisticscontainer Done.
In [2]:
usLaborLAUS_df.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 12289052 entries, 0 to 12289051 Data columns (total 15 columns): area_code object area_type_code object srd_code object measure_code object series_id object year int32 period object value float32 footnote_codes object seasonal object series_title object measure_text object srd_text object areatype_text object area_text object dtypes: float32(1), int32(1), object(13) memory usage: 1.3+ GB
In [3]:
 
In [1]:
# Pip install packages
import os, sys

!{sys.executable} -m pip install azure-storage-blob
!{sys.executable} -m pip install pyarrow
!{sys.executable} -m pip install pandas
In [2]:
# Azure storage access info
azure_storage_account_name = "azureopendatastorage"
azure_storage_sas_token = r""
container_name = "laborstatisticscontainer"
folder_name = "laus/"
In [3]:
from azure.storage.blob import BlockBlobServicefrom azure.storage.blob import BlobServiceClient, BlobClient, ContainerClient

if azure_storage_account_name is None or azure_storage_sas_token is None:
    raise Exception(
        "Provide your specific name and key for your Azure Storage account--see the Prerequisites section earlier.")

print('Looking for the first parquet under the folder ' +
      folder_name + ' in container "' + container_name + '"...')
container_url = f"https://{azure_storage_account_name}.blob.core.windows.net/"
blob_service_client = BlobServiceClient(
    container_url, azure_storage_sas_token if azure_storage_sas_token else None)

container_client = blob_service_client.get_container_client(container_name)
blobs = container_client.list_blobs(folder_name)
sorted_blobs = sorted(list(blobs), key=lambda e: e.name, reverse=True)
targetBlobName = ''
for blob in sorted_blobs:
    if blob.name.startswith(folder_name) and blob.name.endswith('.parquet'):
        targetBlobName = blob.name
        break

print('Target blob to download: ' + targetBlobName)
_, filename = os.path.split(targetBlobName)
blob_client = container_client.get_blob_client(targetBlobName)
with open(filename, 'wb') as local_file:
    blob_client.download_blob().download_to_stream(local_file)
In [4]:
# Read the parquet file into Pandas data frame
import pandas as pd

print('Reading the parquet file into Pandas data frame')
df = pd.read_parquet(filename)
In [5]:
# you can add your filter at below
print('Loaded as a Pandas data frame: ')
df
In [6]:
 

Azure Databricks

Package: Language: Python Python
In [1]:
# This is a package in preview.
from azureml.opendatasets import UsLaborLAUS

usLaborLAUS = UsLaborLAUS()
usLaborLAUS_df = usLaborLAUS.to_spark_dataframe()
In [2]:
display(usLaborLAUS_df.limit(5))
area_codearea_type_codesrd_codemeasure_codeseries_idyearperiodvaluefootnote_codesseasonalseries_titlemeasure_textsrd_textareatype_textarea_text
CA3653200000000E363LAUCA3653200000000032000M014.7nanUUnemployment Rate: Syracuse-Auburn, NY Combined Statistical Area (U)unemployment rateNew YorkCombined areasSyracuse-Auburn, NY Combined Statistical Area
CA3653200000000E363LAUCA3653200000000032000M024.7nanUUnemployment Rate: Syracuse-Auburn, NY Combined Statistical Area (U)unemployment rateNew YorkCombined areasSyracuse-Auburn, NY Combined Statistical Area
CA3653200000000E363LAUCA3653200000000032000M034.2nanUUnemployment Rate: Syracuse-Auburn, NY Combined Statistical Area (U)unemployment rateNew YorkCombined areasSyracuse-Auburn, NY Combined Statistical Area
CA3653200000000E363LAUCA3653200000000032000M043.6nanUUnemployment Rate: Syracuse-Auburn, NY Combined Statistical Area (U)unemployment rateNew YorkCombined areasSyracuse-Auburn, NY Combined Statistical Area
CA3653200000000E363LAUCA3653200000000032000M053.6nanUUnemployment Rate: Syracuse-Auburn, NY Combined Statistical Area (U)unemployment rateNew YorkCombined areasSyracuse-Auburn, NY Combined Statistical Area
In [3]:
 
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "laborstatisticscontainer"
blob_relative_path = "laus/"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))

Azure Synapse

Package: Language: Python
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "laborstatisticscontainer"
blob_relative_path = "laus/"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))