Beroepsbevolkingsstatistieken, beroepsbevolking, participatiegraad van de beroepsbevolking en de burgerbevolking (niet-institutioneel) op leeftijd, geslacht, ras en etnische bevolkingsgroepen. in de Verenigde Staten.
Deze gegevensset is afkomstig uit Current Employment Statistics - CES-gegevens (nationaal) gepubliceerd door US Bureau of Labor Statistics (BLS). Lees Informatie over koppelingen en auteursrechten en Belangrijke websitemededelingen voor de voorwaarden met betrekking tot het gebruik van deze gegevensset.
Opslaglocatie
Deze gegevensset wordt opgeslagen in de Azure-regio US - oost. Het wordt aanbevolen om rekenresources in US - oost toe te wijzen voor affiniteit.
Gerelateerde gegevenssets
- Arbeidsuren en salarissen voor VS (nationaal)
- Arbeidsuren en salarissen voor VS (per staat)
- Werkloosheidsstatistieken voor VS (lokale regio)
Mededelingen
AZURE OPEN GEGEVENSSETS WORDEN DOOR MICROSOFT ONGEWIJZIGD GELEVERD. MICROSOFT GEEFT GEEN GARANTIES, EXPLICIET OF IMPLICIET, ZEKERHEDEN OF VOORWAARDEN MET BETREKKING TOT HET GEBRUIK VAN DE GEGEVENSSETS. VOOR ZOVER IS TOEGESTAAN ONDER HET TOEPASSELIJKE RECHT, WIJST MICROSOFT ALLE AANSPRAKELIJKHEID AF VOOR SCHADE OF VERLIEZEN, WAARONDER GEVOLGSCHADE OF DIRECTE, SPECIALE, INDIRECTE, INCIDENTELE OF PUNITIEVE SCHADE DIE VOORTVLOEIT UIT HET GEBRUIK VAN DE GEGEVENSSETS.
Deze gegevensset wordt geleverd onder de oorspronkelijke voorwaarden dat Microsoft de brongegevens heeft ontvangen. De gegevensset kan gegevens bevatten die afkomstig zijn van Microsoft.
Access
Available in | When to use |
---|---|
Azure Notebooks | Quickly explore the dataset with Jupyter notebooks hosted on Azure or your local machine. |
Azure Databricks | Use this when you need the scale of an Azure managed Spark cluster to process the dataset. |
Azure Synapse | Use this when you need the scale of an Azure managed Spark cluster to process the dataset. |
Preview
series_id | year | period | value | footnote_codes | lfst_code | periodicity_code | series_title | absn_code | activity_code | ages_code | cert_code | class_code | duration_code | education_code | entr_code | expr_code | hheader_code | hour_code | indy_code | jdes_code | look_code | mari_code | mjhs_code | occupation_code | orig_code | pcts_code | race_code | rjnw_code | rnlf_code | rwns_code | seek_code | sexs_code | tdat_code | vets_code | wkst_code | born_code | chld_code | disa_code | seasonal |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LNS11000031Q | 1972 | Q01 | 4300 | nan | 10 | Q | (Seas) Civilian Labor Force Level - 20 yrs. & over, Black or African American Men | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | S |
LNS11000031Q | 1972 | Q02 | 4370 | nan | 10 | Q | (Seas) Civilian Labor Force Level - 20 yrs. & over, Black or African American Men | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | S |
LNS11000031Q | 1972 | Q03 | 4397 | nan | 10 | Q | (Seas) Civilian Labor Force Level - 20 yrs. & over, Black or African American Men | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | S |
LNS11000031Q | 1972 | Q04 | 4381 | nan | 10 | Q | (Seas) Civilian Labor Force Level - 20 yrs. & over, Black or African American Men | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | S |
LNS11000031Q | 1973 | Q01 | 4408 | nan | 10 | Q | (Seas) Civilian Labor Force Level - 20 yrs. & over, Black or African American Men | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | S |
LNS11000031Q | 1973 | Q02 | 4445 | nan | 10 | Q | (Seas) Civilian Labor Force Level - 20 yrs. & over, Black or African American Men | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | S |
LNS11000031Q | 1973 | Q03 | 4477 | nan | 10 | Q | (Seas) Civilian Labor Force Level - 20 yrs. & over, Black or African American Men | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | S |
LNS11000031Q | 1973 | Q04 | 4523 | nan | 10 | Q | (Seas) Civilian Labor Force Level - 20 yrs. & over, Black or African American Men | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | S |
LNS11000031Q | 1974 | Q01 | 4574 | nan | 10 | Q | (Seas) Civilian Labor Force Level - 20 yrs. & over, Black or African American Men | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | S |
LNS11000031Q | 1974 | Q02 | 4538 | nan | 10 | Q | (Seas) Civilian Labor Force Level - 20 yrs. & over, Black or African American Men | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | S |
Name | Data type | Unique | Values (sample) | Description |
---|---|---|---|---|
absn_code | int | 4 | 3 4 |
|
activity_code | int | 7 | 8 3 |
|
ages_code | int | 35 | 10 17 |
|
born_code | int | 3 | 2 1 |
|
cert_code | int | 5 | 3 1 |
|
chld_code | int | 6 | 5 3 |
|
class_code | int | 14 | 2 1 |
|
disa_code | int | 3 | 2 1 |
|
duration_code | int | 11 | 18 6 |
|
education_code | int | 9 | 40 19 |
|
entr_code | int | 3 | 1 2 |
|
expr_code | int | 3 | 1 2 |
|
footnote_codes | string | 7 | nan 4.0 |
|
hheader_code | int | 2 | 1 | |
hour_code | int | 13 | 1 16 |
|
indy_code | int | 323 | 368 169 |
|
jdes_code | int | 3 | 1 2 |
|
lfst_code | int | 33 | 20 30 |
|
look_code | int | 7 | 1 6 |
|
mari_code | int | 5 | 2 1 |
|
mjhs_code | int | 6 | 1 2 |
|
occupation_code | int | 566 | 8999 4999 |
|
orig_code | int | 14 | 1 2 |
|
pcts_code | int | 23 | 5 8 |
|
period | string | 18 | M07 M06 |
|
periodicity_code | string | 3 | M Q |
|
race_code | int | 14 | 1 3 |
|
rjnw_code | int | 9 | 1 3 |
|
rnlf_code | int | 11 | 64 63 |
|
rwns_code | int | 17 | 10 1 |
|
seasonal | string | 2 | U S |
|
seek_code | int | 2 | 1 | |
series_id | string | 45,478 | LNU00000000 LNU01000000 |
|
series_title | string | 34,264 | (Unadj) Unemployment Rate (unadj) EMPL. LEVEL Agriculture Female |
|
sexs_code | int | 3 | 1 2 |
|
tdat_code | int | 6 | 1 4 |
|
value | float | 121,742 | 3.0 4.0 |
|
vets_code | int | 8 | 25 1 |
|
wkst_code | int | 7 | 1 4 |
|
year | int | 80 | 2018 2017 |
Azure Notebooks
# This is a package in preview.
from azureml.opendatasets import UsLaborLFS
labor = UsLaborLFS()
labor_df = labor.to_pandas_dataframe()
labor_df.info()
# Pip install packages
import os, sys
!{sys.executable} -m pip install azure-storage-blob
!{sys.executable} -m pip install pyarrow
!{sys.executable} -m pip install pandas
# Azure storage access info
azure_storage_account_name = "azureopendatastorage"
azure_storage_sas_token = r""
container_name = "laborstatisticscontainer"
folder_name = "lfs/"
from azure.storage.blob import BlockBlobServicefrom azure.storage.blob import BlobServiceClient, BlobClient, ContainerClient
if azure_storage_account_name is None or azure_storage_sas_token is None:
raise Exception(
"Provide your specific name and key for your Azure Storage account--see the Prerequisites section earlier.")
print('Looking for the first parquet under the folder ' +
folder_name + ' in container "' + container_name + '"...')
container_url = f"https://{azure_storage_account_name}.blob.core.windows.net/"
blob_service_client = BlobServiceClient(
container_url, azure_storage_sas_token if azure_storage_sas_token else None)
container_client = blob_service_client.get_container_client(container_name)
blobs = container_client.list_blobs(folder_name)
sorted_blobs = sorted(list(blobs), key=lambda e: e.name, reverse=True)
targetBlobName = ''
for blob in sorted_blobs:
if blob.name.startswith(folder_name) and blob.name.endswith('.parquet'):
targetBlobName = blob.name
break
print('Target blob to download: ' + targetBlobName)
_, filename = os.path.split(targetBlobName)
blob_client = container_client.get_blob_client(targetBlobName)
with open(filename, 'wb') as local_file:
blob_client.download_blob().download_to_stream(local_file)
# Read the parquet file into Pandas data frame
import pandas as pd
print('Reading the parquet file into Pandas data frame')
df = pd.read_parquet(filename)
# you can add your filter at below
print('Loaded as a Pandas data frame: ')
df
Azure Databricks
# This is a package in preview.
from azureml.opendatasets import UsLaborLFS
labor = UsLaborLFS()
labor_df = labor.to_spark_dataframe()
display(labor_df.limit(5))
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "laborstatisticscontainer"
blob_relative_path = "lfs/"
blob_sas_token = r""
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
blob_sas_token)
print('Remote blob path: ' + wasbs_path)
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))
Azure Synapse
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "laborstatisticscontainer"
blob_relative_path = "lfs/"
blob_sas_token = r""
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
blob_sas_token)
print('Remote blob path: ' + wasbs_path)
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))