Hopp over navigasjon

US Producer Price Index - Industry

labor statistics ppi industry

Produsentprisindeksen (PPI) er et mål på gjennomsnittlig endring over tid i salgspriser mottatt av hjemlige produsenter for produksjonen deres. Prisene som er inkludert i PPI er fra den første kommersielle transaksjonen for produkter og tjenester dekket.

Producer Price Index Revision-Current Series-indekser gjenspeiler prisbevegelser for nettoytelsen til produsenter organisert etter North American Industry Classification System (NAICS). PC-datasettet er kompatibelt med et bredt utvalg av NAICS-baserte økonomiske tidsserier inkludert: produktivitet, produksjon, arbeid, lønn og inntekter.

PPI-universet består av alle bransjer i vareproduserende sektorer i den amerikanske økonomien-gruvedrift, tilvirkning, landbruk, fiske og skogbruk-så vel som naturgass, elektrisitet, bygg og anlegg og varer som konkurrerer med de som lages i produserende sektorer, som avfalls- og skrapmateriale. Fra og med januar 2011 dekket PPI-programmet mer enn tre fjerdedeler av tjenestesektorens produksjon, publiserte data for utvalgte bransjer i følgende bransjesektorer: engroshandel og detaljhandel; transport og lagring; informasjon; finans og forsikring; eiendomsmegling, leie og utleie; profesjonelle, vitenskapelige og tekniske tjenester; administrative, støtte- og avfallsbehandlingstjenester; helse- og sosialhjelp; og losji.

En viktig fil som inneholder detaljert informasjon om datasettet er tilgjengelig på opprinnelig datasettplassering. Du finner ytterligere informasjon under Vanlige spørsmål.

Datasettet er produsert fra Produsentprisindeks-data publisert av US Bureau of Labor Statistics (BLS). Gjennomgå Informasjon om koblinger og opphavsrett og Viktige nettsidemerknader om vilkår og betingelser knyttet til bruken av datasettet.

Lagerplassering

Dette datasettet er lagret i Azure-området i øst-USA. Tildeling av databehandlingsressurser i øst-USA er anbefalt for affinitet.

Beslektede datasett

Merknader

MICROSOFT LEVERER AZURE OPEN DATASETS PÅ EN “SOM DE ER”-BASIS. MICROSOFT GIR INGEN GARANTIER, UTTRYKTE ELLER IMPLISERTE, ELLER BETINGELSER MED HENSYN TIL DIN BRUK AV DATASETTENE. I DEN GRAD LOKAL LOV TILLATER DET, FRASKRIVER MICROSOFT SEG ALT ANSVAR FOR EVENTUELLE SKADER ELLER TAP, INKLUDERT DIREKTE SKADE, FØLGESKADE, DOKUMENTERT ERSTATNINGSKRAV, INDIREKTE SKADE ELLER ERSTATNING UTOVER DET SOM VILLE VÆRE NORMALT, SOM FØLGE AV DIN BRUK AV DATASETTENE.

Dette datasettet leveres i henhold til de originale vilkårene Microsoft mottok kildedata. Datasettet kan inkludere data hentet fra Microsoft.

Access

Available inWhen to use
Azure Notebooks

Quickly explore the dataset with Jupyter notebooks hosted on Azure or your local machine.

Azure Databricks

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Azure Synapse

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Preview

product_code industry_code series_id year period value footnote_codes seasonal series_title industry_name product_name
2123240 212324 PCU2123242123240 1998 M01 117 nan U PPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjusted Kaolin and ball clay mining Kaolin and ball clay
2123240 212324 PCU2123242123240 1998 M02 116.9 nan U PPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjusted Kaolin and ball clay mining Kaolin and ball clay
2123240 212324 PCU2123242123240 1998 M03 116.3 nan U PPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjusted Kaolin and ball clay mining Kaolin and ball clay
2123240 212324 PCU2123242123240 1998 M04 116 nan U PPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjusted Kaolin and ball clay mining Kaolin and ball clay
2123240 212324 PCU2123242123240 1998 M05 116.2 nan U PPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjusted Kaolin and ball clay mining Kaolin and ball clay
2123240 212324 PCU2123242123240 1998 M06 116.3 nan U PPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjusted Kaolin and ball clay mining Kaolin and ball clay
2123240 212324 PCU2123242123240 1998 M07 116.6 nan U PPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjusted Kaolin and ball clay mining Kaolin and ball clay
2123240 212324 PCU2123242123240 1998 M08 116.3 nan U PPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjusted Kaolin and ball clay mining Kaolin and ball clay
2123240 212324 PCU2123242123240 1998 M09 116.2 nan U PPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjusted Kaolin and ball clay mining Kaolin and ball clay
2123240 212324 PCU2123242123240 1998 M10 115.9 nan U PPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjusted Kaolin and ball clay mining Kaolin and ball clay
Name Data type Unique Values (sample) Description
footnote_codes string 3 nan
P

Identifiserer fotnoter for dataserien. De fleste verdier er null. Se https://download.bls.gov/pub/time.series/pc/pc.footnote.

industry_code string 1,064 221122
325412

NAICS-kode for bransjen. Gå til https://download.bls.gov/pub/time.series/pc/pc.industry for å se koder og navn.

industry_name string 842 Electric power distribution
Pharmaceutical preparation manufacturing

Navn som tilsvarer koden for bransjen. Gå til https://download.bls.gov/pub/time.series/pc/pc.industry for å se koder og navn.

period string 13 M06
M07

Identifiserer perioden data observeres. Gå til https://download.bls.gov/pub/time.series/pc/pc.period for å se komplett liste.

product_code string 4,822 327331P
511210P

Kode som identifiserer produktet dataobservasjonen refererer til. Gå til https://download.bls.gov/pub/time.series/pc/pc.product for å se en oversikt over industrikoder, produktkoder og produktnavn.

product_name string 3,313 Primary products
Secondary products

Navn på produktet dataobservasjonen refererer til. Gå til https://download.bls.gov/pub/time.series/pc/pc.product for å se en oversikt over industrikoder, produktkoder og produktnavn.

seasonal string 1 U

Kode som identifiserer om dataene er sesongjusterte. S=Sesongjustert; U=Ujustert

series_id string 4,822 PCU721110721110102
PCU212399212399A

Kode som identifiserer den spesifikke serien. En tidsserie refererer til et datasett observert over en lengre tidsperiode over konsekvente tidsintervaller. Gå til https://download.bls.gov/pub/time.series/pc/pc.series for å se detaljer om serien, som kode, navn, start- og sluttår etc.

series_title string 4,588 PPI industry data for Electric power distribution-Pacific, not seasonally adjusted
PPI industry data for Electric power distribution-West South Central, not seasonally adjusted
value float 7,658 100.0
100.4000015258789

Prisindeks for vare.

year int 22 2015
2017

Identifiserer observasjonsår.

Select your preferred service:

Azure Notebooks

Azure Databricks

Azure Synapse

Azure Notebooks

Package: Language: Python Python
In [1]:
# This is a package in preview.
from azureml.opendatasets import UsLaborPPIIndustry

labor = UsLaborPPIIndustry()
labor_df = labor.to_pandas_dataframe()
ActivityStarted, to_pandas_dataframe
ActivityStarted, to_pandas_dataframe_in_worker
Looking for parquet files...
Reading them into Pandas dataframe...
Reading ppi_industry/part-00000-tid-1761562550540733469-da319923-1af6-4884-a5f4-16397508d15f-4596-1-c000.snappy.parquet under container laborstatisticscontainer
Done.
ActivityCompleted: Activity=to_pandas_dataframe_in_worker, HowEnded=Success, Duration=7978.44 [ms]
ActivityCompleted: Activity=to_pandas_dataframe, HowEnded=Success, Duration=8014.64 [ms]
In [2]:
labor_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 948634 entries, 0 to 948633
Data columns (total 11 columns):
product_code      948634 non-null object
industry_code     948634 non-null object
series_id         948634 non-null object
year              948634 non-null int32
period            948634 non-null object
value             948634 non-null float32
footnote_codes    948634 non-null object
seasonal          948634 non-null object
series_title      948634 non-null object
industry_name     948634 non-null object
product_name      948634 non-null object
dtypes: float32(1), int32(1), object(9)
memory usage: 72.4+ MB
In [1]:
# Pip install packages
import os, sys

!{sys.executable} -m pip install azure-storage-blob
!{sys.executable} -m pip install pyarrow
!{sys.executable} -m pip install pandas
In [2]:
# Azure storage access info
azure_storage_account_name = "azureopendatastorage"
azure_storage_sas_token = r""
container_name = "laborstatisticscontainer"
folder_name = "ppi_industry/"
In [3]:
from azure.storage.blob import BlockBlobServicefrom azure.storage.blob import BlobServiceClient, BlobClient, ContainerClient

if azure_storage_account_name is None or azure_storage_sas_token is None:
    raise Exception(
        "Provide your specific name and key for your Azure Storage account--see the Prerequisites section earlier.")

print('Looking for the first parquet under the folder ' +
      folder_name + ' in container "' + container_name + '"...')
container_url = f"https://{azure_storage_account_name}.blob.core.windows.net/"
blob_service_client = BlobServiceClient(
    container_url, azure_storage_sas_token if azure_storage_sas_token else None)

container_client = blob_service_client.get_container_client(container_name)
blobs = container_client.list_blobs(folder_name)
sorted_blobs = sorted(list(blobs), key=lambda e: e.name, reverse=True)
targetBlobName = ''
for blob in sorted_blobs:
    if blob.name.startswith(folder_name) and blob.name.endswith('.parquet'):
        targetBlobName = blob.name
        break

print('Target blob to download: ' + targetBlobName)
_, filename = os.path.split(targetBlobName)
blob_client = container_client.get_blob_client(targetBlobName)
with open(filename, 'wb') as local_file:
    blob_client.download_blob().download_to_stream(local_file)
In [4]:
# Read the parquet file into Pandas data frame
import pandas as pd

print('Reading the parquet file into Pandas data frame')
df = pd.read_parquet(filename)
In [5]:
# you can add your filter at below
print('Loaded as a Pandas data frame: ')
df
In [6]:
 

Azure Databricks

Package: Language: Python Python
In [1]:
# This is a package in preview.
from azureml.opendatasets import UsLaborPPIIndustry

labor = UsLaborPPIIndustry()
labor_df = labor.to_spark_dataframe()
ActivityStarted, to_spark_dataframe ActivityStarted, to_spark_dataframe_in_worker ActivityCompleted: Activity=to_spark_dataframe_in_worker, HowEnded=Success, Duration=2665.84 [ms] ActivityCompleted: Activity=to_spark_dataframe, HowEnded=Success, Duration=2668.22 [ms]
In [2]:
display(labor_df.limit(5))
product_codeindustry_codeseries_idyearperiodvaluefootnote_codesseasonalseries_titleindustry_nameproduct_name
2123240212324PCU2123242123240 1998M01117.0nanUPPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjustedKaolin and ball clay miningKaolin and ball clay
2123240212324PCU2123242123240 1998M02116.9nanUPPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjustedKaolin and ball clay miningKaolin and ball clay
2123240212324PCU2123242123240 1998M03116.3nanUPPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjustedKaolin and ball clay miningKaolin and ball clay
2123240212324PCU2123242123240 1998M04116.0nanUPPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjustedKaolin and ball clay miningKaolin and ball clay
2123240212324PCU2123242123240 1998M05116.2nanUPPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjustedKaolin and ball clay miningKaolin and ball clay
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "laborstatisticscontainer"
blob_relative_path = "ppi_industry/"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))

Azure Synapse

Package: Language: Python
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "laborstatisticscontainer"
blob_relative_path = "ppi_industry/"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))