Global nedbør estimeres i 15-minutters intervaller.
NOAA Global Hydro Estimator (GHE)-programmet produserer estimater av global (mellom -60 ° og +60 ° breddegrad) nedbør hvert femtende minutt ved ~4 km oppløsning. Estimatene deriveres fra satellittbilder og data fra NOAAs Global Forecast System. Detaljer om GHE-algoritmer er tilgjengelig her.
Dette datasettet er tilgjengelig på Azure takket være NOAA Big Data Program.
Lagringsressurser
Data lagres i blober i formatet gzip’d NetCDF (en blob per bilde) i det østamerikanske datasenteret i følgende blob-beholder:
https://ghe.blob.core.windows.net/noaa-ghe
Innenfor den beholderen kalles dataene:
[product]/[year]/[month]/[day]/[filename]
- produkt er et produktnavn, dette skal alltid være «nedbør»
- år er et firesifret år
- måned er en tosifret kode for måned-i-årstall og begynner med 01
- dag er en tosifret kode for dag-i-måneden og begynner med 01
- filnavn avkoder produktet, dato og time, og hvor de siste fire sifrene avkoder 24-timers tid innen en begrensning på 15-minutter
For eksempel kan dette filnavnet:
https://ghe.blob.core.windows.net/noaa-ghe/rain_rate/2020/04/02/NPR.GEO.GHE.v1.S202004020030.nc.gz
… inneholde nedbørsestimatet for en 15-minuttersperiode klokken 00.30 UTC 2. april 2020.
Bredde- og lengdegrad er ikke nøyaktig ensartede verdier, så en tilleggsfil er tilgjengelig for å spesifisere det nøyaktige rutenettet for bredde- og lengdegrad som er tilknyttet alle GHE-filer (~160 MB):
https://ghe.blob.core.windows.net/noaa-ghe/NPR.GEO.GHE.v1.Navigation.netcdf.gz
Et fullstendig eksempel på tilgang til og innføring av GHE-bilde (f.eks. et momentant globalt estimat) i Python, er tilgjengelig i notatboken under “datatilgang”.
Vi leverer også et skrivebeskyttet SAS-token (delt tilgangssignatur) for å gi tilgang til GHE-data via, f.eks., BlobFuse, som lar deg sette inn blob-beholdere som stasjoner:
st=2020-04-14T00%3A09%3A17Z&se=2034-04-15T00%3A09%3A00Z&sp=rl&sv=2018-03-28&sr=c&sig=%2F1X7FhDPqwF9TYzXVvB8D%2BX%2F%2B3OYbDdMkXpKU37T6eI%3D
Monteringsinstruksjoner for Linux er her.
Behandling i stor skala med dette datasettet utføres best i Azure-datasenteret USA, øst, der dataene er lagret. Hvis du bruker GHE-data for miljøvitenskapsprogrammer, vurder å søke om et AI for Earth-stipend for å støtte dine databehandlingskrav.
Fint bilde
Daglig global utfelling den 9. april 2020.
Kontakt
For spørsmål om datasettet kontakt aiforearthdatasets@microsoft.com
.
Varsler
MICROSOFT LEVERER AZURE OPEN DATASETS PÅ EN “SOM DE ER”-BASIS. MICROSOFT GIR INGEN GARANTIER, UTTRYKTE ELLER IMPLISERTE, ELLER BETINGELSER MED HENSYN TIL DIN BRUK AV DATASETTENE. I DEN GRAD LOKAL LOV TILLATER DET, FRASKRIVER MICROSOFT SEG ALT ANSVAR FOR EVENTUELLE SKADER ELLER TAP, INKLUDERT DIREKTE SKADE, FØLGESKADE, DOKUMENTERT ERSTATNINGSKRAV, INDIREKTE SKADE ELLER ERSTATNING UTOVER DET SOM VILLE VÆRE NORMALT, SOM FØLGE AV DIN BRUK AV DATASETTENE.
Dette datasettet leveres i henhold til de originale vilkårene Microsoft mottok kildedata. Datasettet kan inkludere data hentet fra Microsoft.
Access
Available in | When to use |
---|---|
Azure Notebooks | Quickly explore the dataset with Jupyter notebooks hosted on Azure or your local machine. |
Select your preferred service:
Azure Notebooks
# Mostly-standard imports
import os
import gzip
import tempfile
import numpy as np
import shutil
import urllib
import requests
import matplotlib.pyplot as plt
import matplotlib as mpl
from scipy.interpolate import interp2d
from tqdm import tqdm
# Less-common-but-still-pip-installable imports
import netCDF4
from azure.storage.blob import ContainerClient
from mpl_toolkits.basemap import Basemap
# pip install progressbar2, not progressbar
import progressbar
# Storage locations are documented at http://aka.ms/ai4edata-ghe
ghe_account_name = 'ghe'
ghe_container_name = 'noaa-ghe'
ghe_account_url = 'https://' + ghe_account_name + '.blob.core.windows.net'
ghe_blob_root = ghe_account_url + '/' + ghe_container_name + '/'
# Create a ContainerClient to enumerate blobs
ghe_container_client = ContainerClient(account_url=ghe_account_url,
container_name=ghe_container_name,
credential=None)
# The grid spacing for all GHE files is defined in a separate NetCDF file. Uniform
# interpolation is close, but it's not perfectly regular.
grid_file_url = 'https://ghe.blob.core.windows.net/noaa-ghe/NPR.GEO.GHE.v1.Navigation.netcdf.gz'
temp_dir = os.path.join(tempfile.gettempdir(),'ghe')
os.makedirs(temp_dir,exist_ok=True)
%matplotlib inline
def download_url(url, destination_filename=None, progress_updater=None,
force_download=False, verbose=True):
"""
Download a URL to a temporary file
"""
if not verbose:
progress_updater = None
# This is not intended to guarantee uniqueness, we just know it happens to guarantee
# uniqueness for this application.
if destination_filename is None:
url_as_filename = url.replace('://', '_').replace('/', '_')
destination_filename = \
os.path.join(temp_dir,url_as_filename)
if (not force_download) and (os.path.isfile(destination_filename)):
if verbose:
print('Bypassing download of already-downloaded file {}'.format(
os.path.basename(url)))
return destination_filename
if verbose:
print('Downloading file {} to {}'.format(os.path.basename(url),
destination_filename),end='')
urllib.request.urlretrieve(url, destination_filename, progress_updater)
assert(os.path.isfile(destination_filename))
nBytes = os.path.getsize(destination_filename)
if verbose:
print('...done, {} bytes.'.format(nBytes))
return destination_filename
# This file is ~150MB, so best to cache this
grid_filename_gz = download_url(grid_file_url,verbose=True)
with gzip.open(grid_filename_gz) as gz:
grid_dataset = netCDF4.Dataset('dummy', mode='r', memory=gz.read())
print(grid_dataset.variables)
lat_grid_raw = grid_dataset['latitude']
lon_grid_raw = grid_dataset['longitude']
# Data are stored as product/year/month/day/filename
product = 'rain_rate'
# Grab data from April 9, 2020
syear = '2020'; smonth = '04'; sday = '09'
# Filenames look like:
#
# NPR.GEO.GHE.v1.S202001170000.nc.gz
#
# ...where the last four digits represent time, n increments of 15 minutes from 0000
# We can either sum over a whole day, or take a single 15-minute window
single_time_point = False
if single_time_point:
# Pick an arbitrary time of day to plot
stime = '0200'
filename = 'NPR.GEO.GHE.v1.S' + syear + smonth + sday + stime + '.nc.gz'
blob_urls = [ghe_blob_root + product + '/' + syear + '/' + smonth + '/' + sday + '/' \
+ filename]
else:
prefix = product + '/' + syear + '/' + smonth + '/' + sday
print('Finding blobs matching prefix: {}'.format(prefix))
generator = ghe_container_client.list_blobs(name_starts_with=prefix)
blob_urls = []
for blob in generator:
blob_urls.append(ghe_blob_root + blob.name)
print('Found {} matching scans'.format(len(blob_urls)))
rainfall = None
variable_description = None
n_valid = np.zeros(lat_grid_raw.shape)
rainfall = np.zeros(lat_grid_raw.shape)
for i_blob,blob_url in tqdm(enumerate(blob_urls),total=len(blob_urls)):
# Typical files are ~3MB compressed
filename = download_url(blob_url,verbose=False)
# NetCDF4 can read directly from gzip without unzipping the file to disk
with gzip.open(filename) as gz:
dataset = netCDF4.Dataset('dummy', mode='r', memory=gz.read())
rainfall_sample = dataset['rain'][:]
# There are fill values in here where data isn't available. If we were really trying to
# produce global rainfall estimates over a fixed time period, we would think carefully
# about what we want to do with those invalid values, e.g. averaging over all the *valid*
# values at each grid cell, instead of summing.
rainfall_sample[rainfall_sample < 0] = 0
variable_description = str(dataset.variables)
rain_units = dataset['rain'].units
rainfall = rainfall + rainfall_sample
dataset.close()
min_rf = np.min(rainfall)
max_rf = np.max(rainfall)
print('Ranfall ranges from {}{} to {}{}'.format(min_rf,rain_units,max_rf,rain_units))
# Make a 'backup' so we can tinker, as one does in notebooks
rainfall_raw = rainfall.copy();
# Take a look at what's in each NetCDF file
print(variable_description)
image_size = np.shape(rainfall_raw)
nlat = image_size[0]; nlon = image_size[1]
assert(np.shape(rainfall_raw)==np.shape(lat_grid_raw))
assert(np.shape(rainfall_raw)==np.shape(lon_grid_raw))
# Downsample by decimation
ds_factor = 10
lon_grid = lon_grid_raw[::ds_factor,::ds_factor,]
lat_grid = lat_grid_raw[::ds_factor,::ds_factor,]
rainfall = rainfall_raw[::ds_factor,::ds_factor,]
plt.figure(figsize=(20,20))
# Prepare a matplotlib Basemap so we can render coastlines and borders
m = Basemap(projection='merc',
llcrnrlon=np.nanmin(lon_grid),urcrnrlon=np.nanmax(lon_grid),
llcrnrlat=np.nanmin(lat_grid),urcrnrlat=np.nanmax(lat_grid),
resolution='c')
# Convert lat/lon to a 2D grid
# lon_grid,lat_grid = np.meshgrid(lon,lat)
x,y = m(lon_grid,lat_grid)
# Clip our plot values to an upper threshold, and leave anything
# below the lower threshold as white (i.e., unplotted)
n_files = len(blob_urls)
upper_plot_threshold = n_files*10
lower_plot_threshold = n_files*0.01
Z = rainfall.copy()
Z[Z > upper_plot_threshold] = upper_plot_threshold
Z[Z < lower_plot_threshold] = np.nan
Z = np.ma.masked_where(np.isnan(Z),Z)
# Choose normalization and color mapping
norm = mpl.colors.LogNorm(vmin=Z.min(), vmax=Z.max(), clip=True)
cmap = plt.cm.Blues
# Plot as a color mesh
cs = m.pcolormesh(x,y,Z,norm=norm,cmap=cmap)
# Draw extra stuff to make our plot look fancier... sweeping clouds on a plain background
# are great, but sweeping clouds on contentinal outlines are *very* satisfying.
m.drawcoastlines()
m.drawmapboundary()
m.drawparallels(np.arange(-90.,120.,30.),labels=[1,0,0,0])
m.drawmeridians(np.arange(-180.,180.,60.),labels=[0,0,0,1])
m.colorbar(cs)
plt.title('Global rainfall ({})'.format(rain_units))
plt.show()
shutil.rmtree(temp_dir)