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Interactive Demo Case Studies 

We have developed the following Jupyter notebooks so that you can experience the concepts 

discussed in this paper in practice and adapt them to your own use cases. 

 

 

Protecting Statistics Against Reconstruction Attacks 

Learn how attackers might reconstruct sensitive income 

information based on released summary statistics. 

SmartNoise can help you protect personal data against 

reconstruction attacks. 

 

Protecting Sensitive Data Against Re-Identification 

Attacks 

Learn how attackers might combine an anonymized 

medical dataset with other available data to identify 

patients. See how to use SmartNoise to protect personal 

data against re-identification attacks. 

 

 

Privacy-Preserving Statistical Analysis 

Learn how to use SmartNoise to disclose statistical reports 

with the Differential Privacy concept. 

Understand how different levels of privacy guarantees and 

data set sizes impact statistical accuracy. 

 

 

Machine Learning Using a Differentially Private Classifier 

Check out different options to perform differentially 

private machine learning for a classification task. 

Experience how different levels of privacy guarantees and 

data set sizes affect model quality. 

 

 

Generating a Synthetic Dataset for Privacy-Preserving 

Machine Learning 

See how SmartNoise can be used to generate a 

differentially private dataset that can be disclosed without 

privacy concerns. Check out how the synthetic dataset can 

be used for machine learning. 

 

Detect Pneumonia in X-Ray Images while Protecting 

Patients' Privacy 

Discover how to perform differentially private deep 

learning by analyzing medical images. 

 

https://github.com/opendifferentialprivacy/smartnoise-samples/tree/master/whitepaper-demos
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Introduction 

Sensitive and confidential information about individuals is extensively used and shared between 

companies, government entities, research organizations, and other parties. Inadequate usage of this 

kind of information can result in significant consequences, such as harm to an individual's reputation, 

employability, creditworthiness, and insurability. 

Pioneered by Microsoft Research and their collaborators, Differential Privacy is the gold standard for 

protecting individuals' data in applications like preparing and publishing statistical analyses. 

Differential Privacy provides a mathematically measurable privacy guarantee to individual data 

subjects. It offers significantly higher privacy levels than commonly used disclosure limitation practices 

like data anonymization. The latter increasingly shows vulnerability to re-identification attacks – 

especially as more data about individuals become publicly available.  

This whitepaper provides practical guidance on how personal data can be rigorously protected for 

applications like statistics, machine learning, and deep learning using Differential Privacy. To make the 

beneficial and fascinating concept of Differential Privacy accessible to a broad audience, we refrain 

from discussing the underlying mathematical concepts. Rather, we seek to keep the technical 

descriptions at a high level. Nonetheless, we recommend that readers have background knowledge 

about and understand machine learning concepts.  

Decisions based on artificial intelligence algorithms increasingly impact our lives. There are many open 

questions left for the ongoing debate about ethical challenges. In collaboration with policy makers, 

research institutions, and other technology companies, Microsoft is working on principles, best 

practices, and tools for a responsible approach to creating and using artificial intelligence solutions. 

The following diagram provides an overview of Microsoft's Responsible AI framework. 

 

Figure 1: Microsoft Responsible AI Principles 

Differential Privacy is a vital concept for protecting personal data and therefore provides one option 

for covering the privacy part in the "Privacy & Security" section. That said, it is not designed to increase 

the security of systems used to develop or operate machine learning models. Other approaches can 

be leveraged to accomplish this task (e.g., Confidential Machine Learning). 
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Differential Privacy Overview 

The Dilemma of Traditional Data Anonymization Practices 

Many people would intuitively argue as follows: "If we remove the personally identifiable part from the 

records of our datasets before release, then privacy is ensured." Standard practices support this false 

conclusion since data anonymization techniques are prevalent.  

Let’s look at hospital representatives, who aim to release medical treatment insights for research 

purposes to improve future therapies. They have several options to choose the data categories and 

the level of detail of the disclosed data, as shown in the illustration below. The privacy protection 

objective is to prevent any conclusions about individuals might be drawn from the published data. 

 

Figure 2: Data Anonymization Examples 

The crucial problem with anonymized data is that the released records often include unique 

combinations of variables (digital fingerprints) that someone might link to other publicly available 

information to re-identify specific people. For instance, research has shown that 87% of Americans can 

be uniquely identified with only three pieces of data: Gender, birthday, and ZIP code.1 

Today's data disclosure practices aim to address this issue by minimizing the number of attributes that 

are particularly vulnerable to re-identification. Also, the level of detail is reduced using age categories 

or only the first digits of the ZIP code, as shown above. A typical goal is to achieve a standard known 

as k-anonymity. For example, a released dataset satisfies 5-anonymity if at least five records exist for 

each combination of gender, age, and ZIP code. While this approach likely reduces the hit rate that an 

attacker can achieve, it is far from solving the problem and fails to provide any reliable privacy 

guarantee to individuals. 
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Of course, one can continue by reducing or coarsening 

the data even further before release. However, this can 

eventually erode the utility of the released data also for 

legitimate applications. 

Microsoft researcher Cynthia Dwork’s quote brings it to 

the point: "Anonymized data isn't." As long as useful 

information about individuals is included in the data, it is vulnerable to re-identification attacks (and 

therefore not anonymous). If we want to provide data that cannot be re-identified, we have to remove 

so much information that, in the end, the data is no longer useful. 

In fact, the risk of re-identification of anonymized data is more significant than the above example 

suggests: 

1. Besides the obvious demographic attributes (e.g., age, gender, ZIP code), other information can be 

used for linkage attacks (for instance, diagnostic codes in statistics from other hospitals referring 

to the same individuals). 

2. At the time of publication, it is unknown which information about an individual becomes available 

in the future and might then be exploited for linkage attacks. That said, once released, it is de facto 

impossible to revoke the data from the internet. 

3. Attackers can rely on growing databases about individuals and sophisticated re-identification 

techniques, which further erodes the effectiveness of current anonymization practices. The next 

chapter shows how attackers might exploit statistical summary data to reproduce parts of an 

original dataset. 

A spectacular example of a sophisticated re-identification attack took place in the context of the 

"Netflix Prize" competition. In 2006, Netflix launched a public competition to improve its movie rating 

algorithm and therefore published an anonymized dataset of their subscribers' movie ratings. As 

shown in the following figure, the dataset did not include any demographic data or user identifiers 

(except for a user ID for being able to combine the ratings within the dataset). 

 

Figure 3: Re-Identification Attack in the Context of the "Netflix Prize" Competition 

 

A few weeks after release, researchers from the University of Texas at Austin have shown that they 

could uncover many customers' real names from the anonymized dataset.2 

The attack was performed by linking the entries to corresponding ratings of the public IMDb database, 

where some of the Netflix subscribers also provided ratings using their real identity. The key for 

“Anonymized data isn’t.” 

(Cynthia Dwork) 
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combining the records was the ratings themselves, although there were many gaps and even 

inconsistencies between the entries the same person made in both databases. 

The researchers concluded that if an attacker knows the approximate date when a subscriber rated six 

movies, they would be able to identify him or her in 99% of the attacks. Even when the attacker's 

knowledge about the time of rating and the score is imprecise and totally wrong in some cases, a 

significant hit rate can still be achieved. 

Another disturbing data linkage attack was performed using the public New York City taxi dataset, 

which contains data about yellow cab rides, including date and time of pick-ups and drop-offs, number 

of passengers, destination, and fare amount. It does not contain any personally identifiable information 

about the passengers. However, it is relatively simple to link this data to information made available 

with paparazzi photos published on gossip websites. By then linking GPS information, it was easy to 

find out the celebrities' destination addresses, the amount of fare, and the tips that the VIPs had given. 

 

Figure 4: Re-Identifying Celebrity Taxi Ride Information        Image sources: medium.com, gawker.com 
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The Differential Privacy Concept 

The critical ambition behind Differential Privacy is that no harm should be done to any person because 

their record is part of statistical analysis. An example of economic damage caused by private data 

leakage might occur if an individual (let’s call him Benjamin) agrees to participate in a medical study. 

For instance, the findings of the study 

could include the detection of pre-existing 

health conditions. If a potential employer 

becomes aware of this medical 

information, it could cause them to favor 

other candidates' applications over 

Benjamin's. 

Differential Privacy aims to enable deriving general insights from the statistical analyses (e.g., the 

general correlation between smoking and the risk of lung cancer) while at the same time reliably 

protecting the personal data of Benjamin (and the other participants) on an individual level. 

So what would be a perfect way to prevent potential leakage of Benjamin's record? 

Not participating at all! The "opt-out-scenario" is an essential point of reference in the Differential 

Privacy concept. Let us consider two datasets by way of example: 

 

Figure 5: Original Dataset and Opt-Out Scenario 

The only difference between both datasets is that dataset B does not contain Benjamin's record. 

Therefore, it is impossible that analyzing this data results in specific insights about Benjamin.1

Differential Privacy requires that any analytical results on dataset A (including Benjamin's record) are 

identical (or at least very close) to the opt-out scenario results. Indeed, the distinction between both 

cases is the reason for using the term Differential Privacy. 

Differential Privacy aims to mask the contribution of Benjamin's record by adding a precisely tuned 

amount of random noise to the data.  Let us take a simple example known as the randomized response 

 
1 We might derive general insights about the world that can also be attributed to Benjamin without 

him participating: If the study reveals that smoking causes lung cancer and if we find out that Benjamin 

is a smoker, we can conclude that he has an increased risk of getting lung cancer. That said, this risk 

exists regardless of Benjamin’s decision whether or not to participate in the study. 

“Computer science got us into this mess. 

Can computer science get us out of it?” 

(Latanya Sweeney) 
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technique in market and social research. This time, we want to learn about taxpayers' compliance by 

asking the participants if they have ever evaded taxes. There is a strong motivation for tax cheaters to 

hide their real behavior, so they appear to meet social norms. Also, leakage of this information could 

have severe legal consequences. 

What can we do to guarantee the privacy of the participants' sensitive data? And specifically, how can 

we ensure that no harm might occur to participants of the survey (not even to the tax cheaters)?  

We can add random noise at the data acquisition stage of our study by asking the participants to make 

their answers dependent on coin tosses. To guarantee privacy in this setting, no one but the participant 

may be aware of the result of the coin tosses. 

 

Figure 6: Randomized Response Technique 

This method lets the participant toss the coin and answer truthfully if the result is "heads." In case the 

result shows "tails", then the participant flips the coin for a second time and provides a random answer 

based on the outcome. As mentioned, no one but the participant is aware of the result of the tosses. 

No other stakeholder knows if the provided answer corresponds to the truth or not. 

Assuming the design is convincing enough for the participants to comply with these rules, we can 

calculate the relationship between reported and actual tax evaders as follows: 

𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑𝑦𝑒𝑠 =  75% ∗ 𝑇𝑟𝑢𝑒𝑦𝑒𝑠 +  25% ∗ 𝑇𝑟𝑢𝑒𝑛𝑜  

We expect that 75% of the answers from actual tax evaders to be "Yes" (50% truthfully answered plus 

25% by chance). Additionally, 25% of tax-compliant respondents give a wrong answer of "Yes" because 

of their second coin flip (false positives). We can rewrite the formula to estimate the actual share of 

tax evaders depending on our survey results: 

𝑇𝑟𝑢𝑒𝑦𝑒𝑠 = 2 ∗ 𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑𝑦𝑒𝑠 − 0.5 

For instance, if 45% of the participants responded, "Yes," we expect that 2 * 0.45 – 0.5 = 40% of the 

participants have indeed evaded taxes. 

Due to the introduction of random noise, we face statistical imprecision of the result. It turns out that 

this error can be reduced by increasing the number of participants in the study. 
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In practice, noise is introduced computationally using more sophisticated algorithms than our simple 

example. Noise can be added at various process steps: during data acquisition, data aggregation, 

analysis, and release of the results. We will show various examples in the following chapters. 

The amount of noise that is introduced to the computation must be chosen carefully. On the one hand, 

higher quantities of noise increase the level of privacy. On the other side, it is more difficult to derive 

reliable statistical results when the noise level is too high. There is a tunable knob available to adjust 

the amount of noise in the trade-off between privacy and utility. This knob is known as the privacy 

parameter epsilon () It is also called the privacy budget. 

 

 

Figure 7: Tuning the Amount of Noise Using the Privacy Parameter  

Note the inverse relationship between epsilon and privacy: small epsilon values lead to higher levels 

of protection and vice versa. 
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Differential Privacy Applications 

Differential Privacy supports a broad spectrum of analytical use cases ranging from generating basic 

statistics (as seen above) to complex machine learning and deep learning applications, as we 

demonstrate in these chapters. Here is an overview of typical applications: 

 

 

Figure 8: Examples of Differential Privacy Applications 

With roots going back to the 1960s and its formal introduction by Cynthia Dwork et al. in 2006, 

Differential Privacy benefits from a mature scientific foundation today. 

It is also gaining significant traction in practical implementations beyond academia. It seems natural 

that the big tech companies belong to the pioneers, who implement Differential Privacy in large-scale 

production use cases. 

To keep customers' devices secure and up to date, tech companies use diagnostic data to gain insights 

about the quality and user experience. As an example, Microsoft uses Differential Privacy to protect 

diagnostic data on Windows 10 devices based on what is known as the "local model". In this 

implementation, statistical noise is added to the local machine's diagnostic information before 

transmission to Microsoft. 

Differential Privacy is only one part of a comprehensive and layered security and privacy protection 

strategy that also includes security controls, auditing, policies, user consent, data minimization, 

encryption, and other measures. 

As one of the early adopters, the Windows team benefited from working with Microsoft Research, who 

invented the Differential Privacy concept with their associates. The current implementation that 
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protects diagnostic data uses elements of SmartNoise and contributes enhancements back to the open 

source platform so that these innovations become available to the public. 

Other tech companies like Apple and Google use Differential Privacy for similar use cases. These 

examples benefit from high amounts of data thanks to their extensive device bases. For example, 

Windows 10 is used on more than one billion devices today, and therefore, the accuracy loss caused 

by Differential Privacy is negligible. 

The US Census Bureau introduced a high-profile milestone for Differential Privacy and decided to use 

the concept to improve the protection of personal and household data for the 2020 census. 

The bureau's track record of implementing organizational and technical measures to better protect 

personal data goes back to an early census in 1840. Since 2000, the primary technique used to prevent 

disclosure of individual data is "household swapping".  

However, given the availability of increased computational resources and large datasets that might be 

exploited for reconstruction attacks, the bureau decided to look for a better alternative. It announced 

to use Differential Privacy for the 2020 census. 
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Differential Privacy Considerations 
  

Differential Privacy is superior to traditional disclosure limitation techniques in many aspects. It 

is currently the only technique with a formal privacy guarantee that scales even to subsequent 

analyses. Researchers argue that Differential Privacy can influence data protection practices to a 

similar extend as public key infrastructure (PKI) influenced cryptography. 

Individuals will likely be more willing to provide personal data (e.g., participating in surveys or 

medical studies) if a comprehensible privacy guarantee is given. 

The same applies to organizations that own personal data. Due to the risk of privacy breaches 

that might affect an organization's reputation or lead to severe legal consequences, 

organizations are very cautious about sharing or collaborating on personal data. However, there 

are societal opportunity costs caused by this reluctance. Many organizations do not own enough 

data to derive relevant insights (e.g., about rare diseases). Being able to collaborate on such data 

with other entities would be highly beneficial for the society. 

One problem of Differential Privacy is that the concept is less intuitive and more difficult to 

explain. Convincing analytics and machine learning practitioners can also be challenging since 

their work results will be less accurate in many cases. Other stakeholders might find it disturbing 

to accept the distortion of statistical results – especially if the data for producing more accurate 

results is available. 

However, the alternative to Differential Privacy will not be an unprotected release of data in most 

cases. The data owner or privacy laws might require extensive use of traditional disclosure 

limitation techniques if no other protection is available. Consider how much information might 

have to be removed to satisfy 5-anonymity for all records in a database. The resulting loss of the 

utility of statistical analyses will be substantial in many cases.  

Furthermore, the accuracy impact due to the noise can be compensated by adding more data, 

as we will investigate in the next chapters. In fact, the regularization techniques used in 

Differential Privacy can also benefit machine learning scenarios since the models tend to 

generalize better to unseen data. 

The experience with Differential Privacy usage in the 2020 census in the United States with 

regard to effectiveness and stakeholder acceptance will probably be crucial for its adoption in 

the upcoming years. 

We see that stakes for data privacy become higher due to severe, large-scale breaches, growing 

public awareness, and increased regulations like the GDPR. This might be a strong driver for a 

rigorous and formal privacy protection framework like Differential Privacy.   

Differential Privacy might help implement the GDPR right of individuals to request that their 

records are deleted. Applying this requirement to an existing machine learning model is 

challenging. In practice, it is not known which traces of an individual's record are contained in 

the trained model. The model would effectively have to be retrained, just without the data of 

the individual, who exercised his or her GDPR right. As we have seen, Differential Privacy is based 

on this opt-out scenario by masking the contribution of individual data points. We shall see if 

jurisdiction accepts the Differential Privacy concept to satisfy the “right to be forgotten”. 
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The SmartNoise System 

SmartNoise is jointly developed by Microsoft and Harvard's Institute for Quantitative Social Science 

(IQSS) and the School of Engineering and Applied Sciences (SEAS) as part of the Open Differential 

Privacy (OpenDP) initiative. 

The project aims to connect solutions from the research community with the lessons learned from real-

world deployments to make Differential Privacy broadly accessible.  

SmartNoise is designed as a collection of components that can be flexibly configured to enable 

developers to use the right combination for their environments. 

 

Figure 9: The SmartNoise System 

The SmartNoise tools primarily focus on the "global model" of Differential Privacy, as opposed to the 

"local model." In the global Differential Privacy model, a trusted data collector is presumed to have 

access to unprotected data and wishes to protect public releases of aggregate information.  

The core library includes implementations of the most common mechanisms and statistics and some 

utility functions like filtering, imputation, and others. It has an interface for composing operations in 

an analysis graph that can be validated for privacy properties. This validator is the critical functionality, 

as it ensures users are providing formal privacy assurances.  

The core library is designed to be pluggable, allowing the inclusion of new algorithms, including both 

the "aggregate and add noise" and "sample and aggregate" approaches. The primary releases 

available in the library and the mechanisms for generating these releases are shown below.  

Statistics Mechanisms Utilities 

• Count 

• Histogram 

• Mean 

• Quantiles 

• Sum 

• Variance / Covariance 

 

• Gaussian 

• Analytic Gaussian 

• Geometric 

• Exponential 

• Laplace 

• Clamping 

• Cast 

• Clamping 

• Digitize 

• Filter 

• Imputation 

• Transform 

• Synthesizers to generate 

differentially private 

versions of datasets 
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On top of the core library, the platform has an SQL data access layer that allows users to compose 

analysis graphs using the SQL language. This makes it easy to port over existing dashboards and 

analytics workflows to be differentially private. The SQL language is a limited subset of the operations 

that can be specified in the full analysis graph.  

The SQL data access layer transparently intercepts calls to backend databases that support SQL-92, 

applying Differential Privacy before returning results. The library includes support for SQL Server, 

PostgreSQL, Spark, SQLite, Pandas, Dataverse, and Presto.  

Because this system's SQL support functions as a data access layer, it is straightforward to add support 

for other backends, such as Oracle or DB2. The platform provides interfaces that others can extend, 

and more databases will be added in the future. 

To ease deployment, the platform includes a sample hosted service that shows users how to compose 

heterogeneous queries over the same dataset, fronted by a REST-based endpoint. Users learn how 

this can be hosted in a cloud environment backed by the open-source MLflow execution environment, 

and how to track combined epsilon across queries that use IBM's Differential Privacy libraries and a 

differentially private SGD using PyTorch. This sample service keeps track of cumulative privacy cost 

only but could serve as a starting point for something that prevents query after the budget has been 

spent.   

Finally, the platform provides a stochastic evaluator tool that can drive any black box privacy algorithm 

to test for adherence to privacy promises and checks the accuracy and bias. 

Protecting against Privacy Attacks 

Reconstructing Original Data from Published Statistics 

Let us play an attacker's role trying to reconstruct sensitive information of a demographic dataset 

based on published summary statistics. In a second step, we use SmartNoise to create a differentially 

private version of the summary statistics and attempt to perform the attack again. 

The dataset is a simplified sample of US residents' demographic records from the Public Use Microdata 

Sample (PUMS) statistics. It contains 1,000 records with the following information: Education, ethnicity, 

age, gender, marital status, and income. Our attacker has only access to the published summary 

statistics of the income, which is considered sensitive information that he aims to recover. 

 

Figure 10: Anatomy of a Database Reconstruction Attack 
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Protection is provided to the released information by statistical disclosure limitation similar to the k-

anonymity principle explained above: No information (means or medians) is released for the 

subgroups (combinations of education, ethnicity, age, gender, marital status) when the size is smaller 

than five records (similar to 5-anonymity). 

The reconstruction attack approach is relatively straightforward: We aim to generate a dataset 

containing 1,000 records that is consistent with the published summary statistics. This is basically a 

combinatoric task with a significant complexity level due to the many possible variable interactions. 

However, in principle, it is nothing more than solving a giant puzzle. 

We are using the Z3 Theorem Prover from Microsoft Research to accomplish this task. Z3 is used to 

solve mathematical equations, puzzles, games like Sudoku, and other combinatoric problems. 

For the reconstruction attack, we must consider a couple of issues. Firstly, Z3 is probably able to 

reconstruct a part of the database, but not all records. The amount of correctly reconstructable data 

depends on the quantity of the released information and its detail level. Secondly, there is typically 

more than a single way to reconstruct the data that satisfies the summary statistics' constraints. Thirdly, 

an attacker might leverage additional information from outside the statistical release about individuals 

in the database to improve the attack results. 

The complementary Jupyter notebook 1-reconstruction-attack includes several attack scenarios that 

can be tuned to experience the effect of additional data, changing the level of disclosure limitation 

and further adjustments. 

In our case (minimum of 5 records per subgroup, no additional information leveraged, the statistical 

release includes average and median), we get the following results: 

• 120 (12.0 %) incomes reconstructed exactly 

• 257 (25.7 %) incomes reconstructed within $2,000 

• 380 (38.0 %) incomes reconstructed within $5,000 

Note that we can assess the attack's quality since we have access to the original dataset for comparison. 

A real attacker would not have this luxury. 

So, how can we use SmartNoise to successfully protect the original data against such re-identification 

attacks? We generate differentially private versions of the summary statistics with a privacy parameter 

of 1.5 to find out. The results show that this privacy level is sufficient to prevent the reconstruction 

attack. Z3 cannot generate a dataset that is consistent with the differentially private releases of the 

summary statistics. The random noise caused too many contradictions to generate a matching dataset.  

We have discussed that the price of achieving this level of privacy protection is some loss in the 

accuracy of the released data. The following diagram provides an impression of this effect by 

comparing the income distribution of the original and differentially private release: 

https://github.com/opendifferentialprivacy/smartnoise-samples/blob/master/whitepaper-demos/1-reconstruction-attack.ipynb
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Figure 11: Income Distribution of Original Data Compared to Differentially Private Version ( = 1.5) 

Even though the database contains only 1,000 records, both histograms look relatively similar when a 

privacy budget of 1.5 is used. We investigate the effect of dataset size and privacy level on the accuracy 

in more detail in the next chapters. 

Re-Identification Attack 

In this section, we go one step further by trying to re-identify individuals from a medical dataset. The 

approach is similar to the discussed examples of revealed Netflix subscribers and New York taxi 

passengers.  

Our showcase compares the effectiveness of anonymization and Differential Privacy. The 

complementary Jupyter notebook 2-reidentification-attack can be used to experience these scenarios 

in action. The flow of the demonstration is as follows: 

https://github.com/opendifferentialprivacy/smartnoise-samples/blob/master/whitepaper-demos/2-reidentification-attack.ipynb
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Figure 12: Comparing the Privacy Protection of Anonymization and Differential Privacy  

Our starting point is a dataset that we have created using artificial data to simulate medical records 

for the demonstration. We have generated 30,000 patient records containing names, ages, zip codes, 

diagnoses, treatment codes, and medical procedures outcomes. 

To simulate the attack against an anonymized dataset, we redact the patients' names and coarsen the 

demographic information: ages are reported as ten-year ranges, and zip codes are shown only to the 

first two digits. The resulting dataset is 3-anonymous, which means that for each combination of the 

reported "insensitive" variables, gender, age, and zip code, at least 3 matching records exist. 

In our scenario, the attacker has access to a dataset of records with demographic information that he 

or she uses to identify individuals from the medical dataset. We have derived the attacker's data 

collection and the medical dataset from the same source for our demo. This approach enables us to 

validate the hit rate of identified individuals after the attack. In a real-world scenario, the attacker would 

likely leverage various kinds of available information ranging from public datasets to databases about 

individuals offered on the black market. 
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Since we do not use additional information about the patients that potentially exist (e.g., pre-existing 

conditions), we expect a hit rate of approximately 30%, given that our dataset is 3-anonymous. The 

results show indeed that we can identify more than 9,000 patients.  

The following table shows examples of successfully re-identified patient records: 

Patient Gender Age Zip Diagnosis Treatment Outcome Match 

Kimberly Thomas F 52 78967 Heart Disease 22 unchanged True 

Thomas Foster M 62 80176 Arthritis 44 unchanged True 

Nathan Huffman M 59 26129 Osteoporosis 30 intensive care True 

Lisa Bass F 39 47750 COPD 38 recovered True 

Shawn Bowman M 80 27472 Alzheimer 35 intensive care True 

Ariel Miller F 68 92122 Arthritis 36 intensive care True 

Natasha Martinez F 37 41288 Heart Disease 45 recovered True 

Matthew Wilson M 43 97748 Heart Disease 48 intensive care True 

Heather Cruz F 37 55750 Heart Disease 37 unchanged True 

Jeremy Schmitt M 21 77819 High Blood Pressure 35 intensive care True 

… … … … … … … … 

Table 1: 9,016 Medical Records Re-Identified from an Anonymized Dataset 

As mentioned, we can count the number of re-identified patients only because we use a unique patient 

identifier in both datasets. This information is used solely to evaluate the effectiveness of the attack 

and not for the re-identification itself. 

The second re-identification attack goal is to determine if Differential Privacy is a more effective way 

to protect sensitive medical information in our scenario. Therefore, we use SmartNoise to create a 

synthesized version of the data based on the original medical data set. Then, we repeat the attack, 

evaluate its effectiveness, and assess if the synthesized dataset is still useful for statistical analyses. 

The generation of synthetic data is a standard statistical disclosure limitation technique aiming to 

preserve individuals' confidentiality represented in the data. However, its main limitation is the lack of 

formal privacy guarantees. Let's find out if Differential Privacy can close this gap. 

The differentially private synthetic dataset is generated from a statistical model based on the original 

dataset. While the approach is also available for unstructured data like text or images, the most 

frequent synthetic data examples are tabular datasets. 

 

Figure 13: Generating a Differentially Private Dataset Based on Original Data 



13 

The synthetic dataset represents a "fake" sample derived from the original data while retaining as many 

statistical characteristics as possible. The synthetic records shown in the right table are not related to 

the corresponding rows in the original table. 

Various techniques exist to generate differentially private synthetic data, including approaches based 

on deep neural networks, auto-encoders, and generative adversarial models.  

The SmartNoise system includes the following data synthesizers: 

Supported Synthesizer Overview 

Multiplicative Weights 

Exponential Mechanism 

(MWEM) 

• Achieves Differential Privacy by combining Multiplicative 

Weights and Exponential Mechanism techniques 

• A relatively simple but effective approach 

• Requires fewer computational resources, shorter runtime 

Differentially Private Generative 

Adversarial Network (DPGAN) 

• Adds noise to the discriminator of the GAN to enforce 

Differential Privacy 

• Has been used with image data and electronic health 

records (HER) 

Private Aggregation of Teacher 

Ensembles Generative 

Adversarial Network (PATEGAN) 

• A modification of the PATE framework that is applied to 

GANs to preserve Differential Privacy of synthetic data 

• Improvement of DPGAN, especially for classification tasks 

DP-CTGAN • Takes the state-of-the-art CTGAN for synthesizing tabular 

data and applies DPSGD (the same method for ensuring 

Differential Privacy that DPGAN uses) 

• Specifically suited for tabular data, avoids issues with mode 

collapse 

• Extensive training times 

PATE-CTGAN • Takes the state-of-the-art CTGAN for synthesizing tabular 

data and applies PATE (the same method for ensuring 

Differential Privacy that PATEGAN uses) 

• Specifically suited for tabular data, avoids issues with mode 

collapse 

Quail-ified Architecture to 

Improve Learning (QUAIL)3 

• Ensemble method to improve the utility of synthetic 

differentially private datasets for machine learning tasks 

• Combines a differentially private synthesizer and an 

embedded differentially private supervised learning model 

to produce a flexible synthetic data set with high machine 

learning utility 

 

For our scenario, we are using the Multiplicative Weights Exponential Mechanism (MWEM), which is a 

straightforward yet effective synthesizer. We also need to specify the desired privacy guarantee 

(epsilon) as an input of the synthesizer process. Here, we chose a level of 3.0, assuming it leads to the 

right balance between privacy protection and utility for statistical analyses. 

The synthesizer does not convert the original dataset. Instead, it generates a new, differentially private 

sample. Therefore, we lose the ability to validate actual matches based on re-identification attacks on 

the synthetic dataset. However, we can count the number of potential matches the attacker could 

identify (identical combinations of gender, age, and zip code). 
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We did not find a single potential match in our tests and can, therefore, safely exclude any actual 

matches. The following comparison summarizes the results based on data anonymization and 

Differential Privacy: 

 

The above results confirm the effectiveness of the Differential Privacy concept for protecting 

confidential data. But we also need to assess the utility for statistical analyses like we did in the previous 

section. For this purpose, we compare the distribution of diagnoses between the original and the 

synthesized dataset. 

 

The histogram looks promising: The synthetic dataset apparently represents the distribution of 

individual variables from the original dataset. We further investigate the relationship between privacy 

guarantee, dataset size, and statistical accuracy in the following. 

The Impact of Privacy and the Amount of Data on Statistical Accuracy 

The purpose of this section is to deepen our view of the trade-off between privacy guarantee and 

statistical accuracy. We have already seen that it is possible to relax the privacy level to improve the 
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quality of statistical outcomes and vice versa. That said, there is a third factor that we can exploit: 

increasing the amount of data. 

We are using a database containing demographic records about Californian residents from the Public 

Use Microdata Sample (PUMS) statistics. The dataset includes more than 1.2 million records and is thus 

suitable to experiment with different sample sizes. The data contains personal information like gender, 

age, ethnicity, income, and marital status. For this analysis, we focus on creating histograms of the 

income variable. 

The following illustrations compare histograms of "true" samples from the original dataset to 

differentially private histograms, each generated at different privacy budgets (controlled by the 

parameter epsilon). The differentially private histograms were created using the geometric mechanism 

of the SmartNoise system. The demo scenario is available as a Jupyter notebook 3-histogram-sample 

developed in Python. 

For our smallest sample of 10,000 records, we can see some deviations between the original sample 

and the differentially private histograms. As expected, the differences increase with more restrictive 

privacy levels since a higher amount of statistical noise is added (corresponding to lower values of 

epsilon). 

We also have calculated the percentage error to get a measure for the deviation at each privacy level 

(see legend). 

 
By increasing the sample size to 50,000 records, we can observe that the histograms resemble each 

other. There are still some differences in our most restrictive privacy setting with an epsilon of 0.05 

(e.g., income levels from 20k to 30k). However, the total percentage error is significantly reduced 

compared to the above example. 

https://github.com/opendifferentialprivacy/smartnoise-samples/blob/master/whitepaper-demos/3-histogram-sample.ipynb
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The final example is based on a sample of 200,000 records. There are almost no observable deviations 

between the bars. The overall percentage error shrinks to 0.3% in our most restrictive setting of epsilon 

equal to 0.05. 

 
The above observations support theoretical findings that the decreasing sampling error tends to offset 

the statistical noise when more records are added. Big data pays off in differentially private settings. 
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Differentially Private Machine Learning 

In the previous chapter, we have seen that Differential Privacy can generate aggregated statistics like 

histograms. This chapter discusses more demanding applications of machine learning with structured 

data. A key question is if the loss of accuracy caused by the added statistical noise can be compensated 

by increasing the amount of data. Then, in the final chapter, we look at an even more challenging use 

case of analyzing medical images with deep learning. 

In a typical machine learning workflow data is transformed in several steps: First, individual records are 

collected, then they are aggregated into a dataset, and finally embodied as parameters of the trained 

machine learning model.  

The following illustration shows at which stages Differential Privacy can be applied to the workflow. 

 

Figure 14: Options to Apply Differential Privacy to a Machine Learning Workflow 

A key question in selecting the best approach is which stakeholders should be allowed to access the 

data in an unprotected state.  

We provide examples for adding noise to the dataset before training (option 2) and conducting 

differentially private training (option 3) in the next sections. 
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Adding Noise at various Stages of the Machine Learning Process 

1. Adding Noise during Data Collection 

The most restrictive approach would be to let the data subject add noise during data collection. 

This corresponds to the discussed method of asking an interviewed person to provide either 

true or false information based on flipping a coin. This way, nobody else involved in the data 

collection or downstream machine learning process is aware of the real answer to the question. 

Since this approach is impractical in many cases, noise is often added automatically on the device 

that is used for data collection. We have discussed this approach in the example of protecting 

diagnostic data of Windows 10 devices. 

2. Adding Noise to the Dataset 

Noise can also be added to the data at a later stage of the workflow. We have already seen the 

example of using the SmartNoise MWEM synthesizer to generate differentially private datasets.  

One benefit of this approach is that the whole synthesized dataset could be disclosed (even to 

potentially untrusted parties) without concerns of disclosing private data.  

With this method, the span of trust includes the persons who collect the original data and 

generate the synthetic dataset from it. 

One can then perform machine learning and other types of analysis on the synthetic dataset. 

There are some drawbacks to this approach; e.g., there can be a substantial impact on the 

model's accuracy depending on the characteristics of the dataset.  

Furthermore, the resulting model often needs to be evaluated using test data from the original 

distribution. Therefore, at least a part of the dataset is kept unprotected. 

3. Differentially Private Machine Learning Training 

The machine learning process is often based on an algorithm (e.g., Random Forest) or a neural 

network, which is derived from a training dataset. The result of this process is the trained 

machine learning model that can make predictions for new data. The related privacy risk is that 

an attacker might extract information about individuals from the trained model.  

Using Differential Privacy with machine learning aims to prevent these kinds of attacks. However, 

the model is still trained on the original (unprotected) data. Thus, while Differential Privacy 

protects the resulting model, the dataset is not protected by this approach. 

Several machine learning algorithms like Logistic Regression have been adjusted to learn in a 

differentially private way. The same applies to the way how neural networks can be trained in 

deep learning. 
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Differentially Private Machine Learning Algorithms 

The following case study applies differentially private machine learning algorithms to a tabular dataset. 

We are adding noise at the training stage of the machine learning workflow (option 3 as described in 

the previous section).  

The key aspect is to compare the performance of the resulting model with non-private machine 

learning. Furthermore, we investigate the impact of the dataset size when using Differential Privacy. 

Can we compensate for the accuracy loss induced by the added noise by acquiring more data? 

The example is based on the following workflow: 

 

We have chosen a classification task for our showcase. However, Differential Privacy also enables other 

supervised tasks (e.g., regression). The demo scenario is available as a Jupyter notebook 4-ml-dp-

classifier developed in Python, which you can use to reproduce the results and customize to your use 

cases. 

Generating a Dataset for a Supervised Classification Scenario 

We are generating an artificial dataset for this scenario. While it is generally preferred to test new 

approaches with real-world data, the selected method has some advantages: 

• The dataset's complexity can be adjusted to test differentially private machine learning at 

different levels of difficulty. 

• There is no limitation in the dataset size, which is beneficial for our experiment since we want to 

learn about the effect of various data volumes. 

Our experience shows that comparable results can also be achieved with real-world datasets. 

Furthermore, we discuss a deep learning scenario on a real medical dataset in the next section. 

We are using the make_classification function from the popular Scikit-Learn library to generate an 

artificial multiclass dataset based on the following specification: 

Parameter Value Comment 

Number of Instances Up to 100,000 Varied between experiments. 80% : 20% Train-test split 

Number of classes 10 10 balanced classes 

Flipped classes 3% The fraction of samples which are assigned randomly 

Clusters per class 2 2 clusters with a class separator of 5.0 

Number of features 20 Varying levels  of relevance  

Informative features 7 Features that are relevant for prediction 

Redundant features 5 Linear combinations of informative features 

Repeated features 5 Random copies of informative and redundant features 

Useless features 3 Random noise (unrelated to differential privacy) 

Feature data type Float  

Table 2: Specification of the Artificial Dataset for Differentially Private Machine Learning 

Generate dataset 
for supervised 
classification

Train a non-
private baseline 

model for 
comparison

Compare non-
private and DP 

versions of Naive 
Bayes and 

Logistic 
Regression

Assess the 
impact of dataset 
size and privacy 

level on accuracy

https://github.com/opendifferentialprivacy/smartnoise-samples/blob/master/whitepaper-demos/4-ml-dp-classifier.ipynb
https://github.com/opendifferentialprivacy/smartnoise-samples/blob/master/whitepaper-demos/4-ml-dp-classifier.ipynb
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Approx. 3% of instances are assigned randomly to the classes. Therefore, we expect an optimal 

classifier to achieve an accuracy score of roughly 97%. 

The following illustration of several feature combinations of the dataset provides an overview of the 

classification task's complexity. 

 

 
Figure 15: Scatter Plots of Selected Features of the Artificially Generated Dataset 

We see pairwise scatter plots of selected feature variables (2 informative, 1 redundant, and 1 feature 

to introduce noise) and the 10 classes as color-coded points. The figure provides an idea about the 

complexity of the classification task. 

The best constellation for learning to distinguish between the classes is the intersection between both 

informative features inf_0 and inf_1. We can identify clusters along both axes. On the other side, the 

intersections between the feature noise_0 and the other variables show that the model will not learn 

useful patterns from the "noise" features. The structure of the scatter cloud changes along the 

informative variable axis but is unchanged along the noise dimension. 
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Training of a Non-Private Baseline Model for Comparison 

We use a Random Forest algorithm as a baseline since this classifier typically provides robust 

performance. Hence, it should indicate the achievable classification metrics for the dataset. Since 

approximately 3% of the instances are intentionally mislabeled, the maximum accuracy level is around 

97%. 

Without any further tuning, the trained model achieves the expected classification performance right 

from the start, as the test set metrics show: 

Accuracy score: 0.97 --- ROC AUC score: 0.985 

Classification report Precision Recall F1-Score Support 

Class 0 0.97 0.98 0.98 1999 

Class 1 0.97 0.97 0.97 2006 

Class 2 0.98 0.97 0.97 2000 

Class 3 0.97 0.97 0.97 2006 

Class 4 0.97 0.97 0.97 1999 

Class 5 0.98 0.98 0.98 1996 

Class 6 0.97 0.97 0.97 1993 

Class 7 0.97 0.96 0.97 1996 

Class 8 0.97 0.97 0.97 2005 

Class 9 0.97 0.97 0.97 2000 

Macro avg 0.97 0.97 0.97 20000 

Weighted avg 0.97 0.97 0.97 20000 

Table 3: Non-Private Random Forest Baseline Classifier Test Set Performance 

Since we have included a combination of useful, redundant, and useless variables, it is interesting to 

determine which features were relevant to the Random Forest algorithm to predict the classes. 

The feature importance plot shows the contribution of each variable to the classification model. As 

expected, informative and redundant features are among the top performers (the latter also perform 

well because they combine information from various informative variables). As expected, the useless 

features do not provide any insights for the classification model. 

 

Figure 16: Random Forest Feature Importance of the Artificial Dataset 
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Compare Non-Private and DP Versions of Naive Bayes and Logistic Regression 

In this section, we compare the performance of non-private and differentially private machine learning. 

Ideally, this would be based on a differentially private version of the Random Forest algorithm. 

However, the Differential Privacy library used for the comparison does only support Naive Bayes and 

Logistic Regression algorithms at this time. 

For all experiments, the features have been scaled by subtracting the mean and then dividing by the 

standard deviation using StandardScaler from the Scikit-Learn library. 

Naive Bayes 

Naive Bayes methods are supervised learning algorithms based on applying Bayes' theorem to assume 

conditional independence between every pair of features given the class variable's value. 

For the non-private experiment, we are using the GaussianNB classifier from Scikit-Learn and perform 

the training using default values without any hyperparameter tuning. The differentially private version 

of the Naïve Bayes classifier is taken from the IBM Differential Privacy Library (Diffprivlib). This classifier 

is based on the Scikit-Learn version and should therefore provide a good reference point for 

comparison. 

We select a privacy parameter epsilon of 1 and specify the minimum and maximum values of the scaled 

features as required by the classifier (bounds-parameter). 

The following table compares the resulting performance of non-private and private training on the 

test set: 

 Non-private training DP training (ϵ = 1.0)  

Classification Precision Recall F1-Score Precision Recall F1-Score Test n 

Class 0 0.70 0.97 0.81 0.74 0.96 0.83 1999 

Class 1 0.44 0.20 0.28 0.50 0.44 0.47 2006 

Class 2 0.97 0.97 0.97 0.95 0.91 0.93 2000 

Class 3 0.91 0.97 0.94 0.92 0.83 0.87 2006 

Class 4 0.64 0.76 0.70 0.69 0.63 0.65 1999 

Class 5 0.97 0.96 0.96 0.85 0.95 0.90 1996 

Class 6 0.70 0.96 0.81 0.70 0.96 0.81 1993 

Class 7 0.65 0.95 0.77 0..65 0.93 0.76 1996 

Class 8 0.97 0.97 0.97 0.97 0.94 0.95 2005 

Class 9 0.72 0.07 0.12 0.61 0.08 0.14 2000 

Macro avg 0.77 0.78 0.73 0.76 0.76 0.73 20000 

Weighted avg 0.77 0.78 0.73 0.76 0.76 0.73 20000 

 Accuracy: 0.78 - ROC AUC: 0.969 Accuracy: 0.76 - ROC AUC: 0.967  

Figure 17: Non-Private and Differentially Private Training of Naive Bayes Algorithm 

Logistic Regression 

We are using the Logistic Regression classifier from Scikit-Learn and its differentially private 

counterpart from the Diffprivlib library. The privacy guarantee is relaxed compared to the Naive Bayes 

experiment by selecting an epsilon parameter of 3.0. Furthermore, we provide the maximum L2 norm 

of the dataset's rows (data_norm = 7.89) as required by the classifier.  
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The resulting test set performance metrics are as follows: 

•  Non-private training DP training (ϵ = 3.0)  

Classification Precision Recall F1-Score Precision Recall F1-Score Test n 

Class 0 0.97 0.95 0.96 0.87 0.90 0.88 1999 

Class 1 0.93 0.95 0.94 0.83 0.86 0.84 2006 

Class 2 0.97 0.96 0.96 0.95 0.94 0.94 2000 

Class 3 0.90 0.91 0.91 0.80 0.80 0.80 2006 

Class 4 0.94 0.91 0.92 0.92 0.83 0.87 1999 

Class 5 0.94 0.96 0.95 0.92 0.95 0.93 1996 

Class 6 0.88 0.89 0.88 0.78 0.87 0.82 1993 

Class 7 0.93 0.93 0.93 0.83 0.93 0.88 1996 

Class 8 0.97 0.97 0.97 0.96 0.96 0.96 2005 

Class 9 0.87 0.88 0.87 0.79 0.61 0.69 2000 

Macro avg 0.93 0.93 0.93 0.86 0.86 0.86 20000 

Weighted avg 0.93 0.93 0.93 0.86 0.86 0.86 20000 

 Accuracy: 0.93 - ROC AUC: 0.983 Accuracy: 0.86 - ROC AUC: 0.975  

Figure 18: Non-Private and Differentially Private Training of Logistic Regression Algorithm 

Summary of results 

• The non-private version of the Random Forest classifier achieves the maximum accuracy level of 

97%.  

• There is no substantial difference between the non-private and differentially private version of 

Naive Bayes. In both cases, accuracy is about 20 percentage points below the optimum. 

• The difference between the non-private and differentially private versions of logistic regression 

results in approx. 7 percentage points. 

Assessing the Impact of Dataset Size and Privacy Guarantee on Performance 

In many cases, one can improve machine learning performance by adding more data – even though 

there are diminishing returns. This section investigates how to compensate for the accuracy impact of 

differential private training by increasing the dataset size. 

We show results for different privacy levels by adjusting the parameter epsilon in a range of practical 

applications. Smaller ε-values are related to higher statistical privacy guarantees. 

We use the same 10-class dataset as in the previous examples. The following figure illustrates the 

resulting impact of dataset size and privacy guarantee on model performance (measured by the auc- 

score): 
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Figure 19: auc-score of Differentially Private Naive Bayes 

We have chosen auc-score as a performance metric since it is generally more reliable than the simple 

accuracy metric. Auc-scores range from 0.5 (quality of a random guess) to 1.0 (perfect classifier). The 

scores are reported based on the test set. Each cell shows an average metric resulting from 10 

experiments (10 classifiers trained on random samples from the training data). 

The following table shows commonly accepted guidelines on how different auc-sores relate to model 

quality: 

Auc-Score Model Quality 

0.9 to 1.0 Excellent 

0.8 to 0.9 Good 

0.7 to 0.8 Fair 

0.6 to 0.7 Poor 

< 0.6 Fail 

Figure 20: Model Assessment Based on auc-score 

The scenario of 10,000 training records illustrates the substantial impact of epsilon on the resulting 

model quality. Ratings range from "failing" at an aggressive privacy level of 0.05 up to "excellent" when 

epsilon is increased to 2.0 or higher. Also, we notice the clear benefits of adding additional training 

records even though the effect diminishes quickly for settings with more relaxed privacy levels. 
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Machine Learning Based on a Differentially Private Dataset 

In this section, we introduce another variant of differentially private machine learning. Instead of 

adding noise during the training process, it is possible to generate a differentially private version of 

the dataset. This synthetic ("fake") dataset can then be used to train a standard (non-private) machine 

learning algorithm. 

While the synthetic dataset embodies the original data's essential properties, it is mathematically 

impossible to preserve the full data value and guaranteeing record-level privacy at the same time. 

Usually, we can't perform arbitrary statistical analysis and machine learning tasks on the synthesized 

dataset to the same extent as it is possible with the original data. Therefore, the type of downstream 

task should be considered before the data is synthesized. For a classification problem, data generation 

can be performed per group of records that belong to the same class. This way, the latent structure of 

each group is considered when synthetic records are generated. Furthermore, there are challenges in 

performing machine learning on synthetic datasets with high dimensional and imbalanced datasets.  

However, differentially private synthetic data generation is a vibrant field in research with increasing 

practical applications. New and improved synthesizers are published at a rapid pace. The essential 

advantage of the synthesizer approach is that the differentially private dataset can be analyzed any 

number of times without increasing the privacy risk. Therefore, it enables collaboration between several 

parties, democratizing knowledge, or open dataset initiatives. 

We previously used the synthesizer approach to protect sensitive medical information when we 

compared the privacy protection effectiveness of data anonymization and Differential Privacy in the 

previous chapters. We had chosen the MWEM synthesizer of SmartNoise for that purpose. 

In this case, we choose a more sophisticated approach that improves the utility of synthetic 

differentially private datasets specifically for machine learning tasks. 

 

Figure 21: Generating Synthetic Data for Machine Learning Using the QUAIL Method 

The Quail-ified Architecture to Improve Learning (QUAIL) is used to generate the differentially private 

dataset. The method combines a differentially private synthesizer and supervised learning model to 

produce a synthetic dataset with high utility for machine learning applications. 
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Our example use case is based on the following workflow: 

 

The demo scenario is available as a Jupyter notebook 5-ml-synthetic-data developed in Python, which 

you can use to reproduce the results and customize to your use cases. 

Like in the previous section, we use Scikit-Learn to generate an artificial multiclass dataset based on 

the following parameters: 

Parameter Value Comment 

Number of Instances 100,000 80% : 20% Train-test split 

Number of classes 10 10 balanced classes 

Flipped classes 3% The fraction of samples which are assigned randomly 

Clusters per class 2 2 clusters with a class separator of 5.0 

Number of features 7 7 features (float values) 

Table 4: Specification of the Artificial Dataset for Differentially Private Machine Learning 

 

Before creating the synthetic dataset, we train two benchmark models for comparison: 

  Performance metrics 

Benchmark Model Overview Accuracy F1-score ROC-AUC 

Non-private model Non-private Random Forest 

classifier to validate upper bound 

of achievable accuracy (97% 

expected based on the dataset) 

0.97 0.97 0.984 

Differentially private 

model 

A differentially private version of 

the Logistic Regression algorithm 

from the diffprivlib library (epsilon 

of 3.0). See the previous section 

for details. 

0.87 0.87 0.977 

Table 5: Benchmark Models 

There are several options for choosing the synthesizer and classifier part for QUAIL. For our purposes, 

we select PATE-CTGAN as a synthesizer and the differential private version of Logistic Regression from 

the diffprivlib library. 

Finally, we train a Random Forest classifier on the resulting synthetic dataset and evaluate its 

performance on the test set of the original data (train-synthetic-test-real or TSTR). 

  

Generate dataset 
for supervised 
classification

Train non-private 
and differentially 
private models 
for comparison

Synthesize 
dataset with 
differential 

privacy using the 
QUAIL method

Train a classifier 
on the synthetic 

dataset and 
compare results

https://github.com/opendifferentialprivacy/smartnoise-samples/blob/master/whitepaper-demos/5-ml-synthetic-data.ipynb
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The following table compares the accuracy metrics of the differentially private Logistic Regression 

classifier on the original data and the Random Forest classifier trained on the synthetic dataset: 

•  Differentially private version of 

Logistic Regression 

Random Forest trained 

on synthetic data 

 

Classification Precision Recall F1-Score Precision Recall F1-Score Test n 

Class 0 0.89 0.90 0.90 0.92 0.94 0.93 2006 

Class 1 0.83 0.85 0.84 0.90 0.88 0.89 1998 

Class 2 0.95 0.94 0.95 0.97 0.96 0.96 2001 

Class 3 0.78 0.81 0.80 0.86 0.88 0.87 1993 

Class 4 0.92 0.83 0.87 0.92 0.91 0.92 2000 

Class 5 0.94 0.96 0.95 0.96 0.97 0.96 2003 

Class 6 0.75 0.87 0.81 0.81 0.92 0.86 1988 

Class 7 0.89 0.95 0.92 0.83 0.93 0.88 2006 

Class 8 0.97 0.97 0.97 0.97 0.97 0.97 2006 

Class 9 0.82 0.64 0.72 0.88 0.64 0.74 1999 

Macro avg 0.87 0.87 0.87 0.90 0.90 0.90 20000 

Weighted avg 0.87 0.87 0.87 0.90 0.90 0.90 20000 

 Accuracy: 0.87 - ROC AUC: 0.977 Accuracy: 0.90 - ROC AUC: 0.982  

Figure 22: Performance Metrics of Differentially Private Classifier and Machine Learning on Synthetic Data 

 

 

 

 

 

 

 

Machine Learning Results on Synthetic Data 

Our example shows that machine learning based on a synthetic dataset can lead to comparable 

performance as a differentially private classifier. However, research shows that this is not always 

the case depending on the dataset's characteristics and other factors. 

The synthesizer approach's main advantage is that the resulting dataset can be shared and used 

for analytical purposes any number of times without increasing the risk of privacy loss. 

Another advantage is that the synthesizer allows producing an arbitrary amount of data derived 

from the original dataset's distribution. This could be a promising approach for data augmentation 

to improve the resulting machine learning model's quality. 
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Deep Learning on Medical Images 

The previous examples have demonstrated that Differential Privacy can be used to effectively protect 

private data while enabling analytical use cases and machine learning on structured data with 

promising results at the same time. 

This chapter discusses a more ambitious use case of performing deep learning with Differential Privacy 

to classify x-ray images to detect pneumonia. 

Modern deep learning architectures are especially prone to privacy risks due to their enormous 

capacity, often with millions (sometimes billions) of trainable parameters. Thus, there is always a 

tendency to memorize individual data points (or even whole datasets). This behavior is undesired not 

only for privacy reasons. Machine learning aims to train a model that can learn general patterns to 

make accurate predictions for new data points instead of memorizing the training data. 

The medical imaging example is based on the following workflow: 

 

The corresponding demo scenario is available as a Jupyter notebook 6-deep-learning-medical 

developed in Python, which can be used to reproduce the results and to be customized to other use 

cases. We have selected the deep learning framework PyTorch for our experiment. 

Acquisition and Preparation of X-Ray Image Dataset 

A relatively small public dataset of medical images has been chosen to keep the scenario 

straightforward and reproducible with limited computing resources.4 The dataset contains 5,218 x-ray 

images with two classes of diagnostic outcomes: 3,876 cases with (viral or bacterial) pneumonia and 

1,342 cases without findings ("Normal"). 

 

Figure 23: X-Rays Showing "Pneumonia" Versus "Normal" Chest Images 

The dataset is split into training and validation sets by a ratio of 90% to 10%. Since some images 

represent radiographs from the same patient, it has been ensured that there is no overlap of patients 

between the training and validation sets. 

Acquisition and 
preparation of a 

public x-ray 
image dataset

Development of 
a non-private 
deep learning 

baseline model 
for comparison

Development of 
a differentially 
private model

Comparison of 
results

https://github.com/opendifferentialprivacy/smartnoise-samples/blob/master/whitepaper-demos/6-deep-learning-medical.ipynb
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Development of A Non-Private Baseline Model 

Before training a deep learning classification model based on the above dataset, we first have to specify 

a neural network architecture. Convolutional Neural Networks (CNNs or Convnets) represent the state 

of the art for most computer vision tasks. 

There are many architecture options with increasing levels of complexity available. To avoid 

unnecessary demand for computational resources, long training times, and the risk of overfitting, it is 

recommended to aim for the simplest model required for the respective data. Since the dataset 

contains a relatively low number of images, and there are only two classes to distinguish, we have 

chosen the following architecture: 

 

Figure 24: Convolutional Neural Network Architecture for Medical Image Classification 

We recommend considering more powerful state of the art architectures like Resnet or Inception for 

productive medical use cases. Furthermore, strategies like transfer learning (reusing trained networks 

from comparable computer vision tasks) should be considered. These techniques generally also work 

with the Differential Privacy approach for deep learning discussed in this paper. 
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The model is trained with a straightforward training approach using PyTorch as the deep learning 

framework. No data augmentation (generating artificial samples by transforming training images) or 

transfer learning has been used. The images have been split into a training and validation set to identify 

potential overfitting during training. Adam was used as the optimizer with a learning rate of 0.0001. 

The model achieves high accuracy values already after the images have passed the training process 

for 10 times (10 epochs with a batch size of 32): 

 

Neural Network Design 

Though a detailed discussion of the architecture and functionality of Convnets is outside the scope 

of this whitepaper, the following summary provides a brief overview of the design: 

• The x-ray images are resized to a 224 x 224 pixel resolution before being fed into the Convnet. 

Other medical imaging use cases will most likely require higher resolutions. However, for the 

selected dataset, high accuracy results can be achieved with this small image size. 

• During the data flow through the Convnet, relevant properties for the classification task 

(features) are extracted in a hierarchical way. The lower layers of the network detect low-level 

features like edges or surfaces. More complex features (for detecting pneumonia in this case) 

are extracted at higher layers. The three convolutional layers perform the detection of features 

at different abstraction levels in the network, where the images are scanned by a small moving 

window (kernel). 

• To reduce computational effort while focusing on the most dominant features, the image size 

is reduced further as the data flows through the three max pooling layers. 

• Two dropout layers are included to reduce the risk of overfitting to the training data. 

• The final layer consists of two neurons for representing the classes "pneumonia" and "normal." 

A multiclass architecture has been selected since one of the evaluated Differential Privacy 

modules was not yet compatible with binary classification. 

•  



31 

 

Figure 25: Progress of Typical (Non-Private) Training Process for Image Classification 

The training was performed on an Azure Standard NC 12 Tesla K80 GPU Compute Instance with 112 

GB memory (GPU memory of 24 GB). The training process took 19 minutes. 

The following table summarizes the model performance based on validation set results: 

Accuracy score: 0.981   auc-score: 0.999 

Classification report Precision Recall F1-Score Support 

Normal 1.00 0.93 0.96 134 

Pneumonia 0.97 1.00 0.99 385 

Micro avg 0.98 0.98 0.98 519 

Macro avg 0.99 0.96 0.97 519 

Weighted avg 0.98 0.98 0.98 519 

Samples avg 0.98 0.98 0.98 519 

Table 6: Validation Set Classification Performance of Non-Private Training 

The validation results indicate a strong classification performance. 98% of the validation images are 

classified correctly. A good practice is to compare these metrics with a simple baseline approach. Since 

74% of validation images belong to the pneumonia class, a trivial (nonsense) classifier that predicts all 

cases as "pneumonia" would achieve 74% accuracy. The performance achieved with the trained model 

is 24% percentage points above the trivial classifier. The classification report provides additional insight 

into its performance: The recall scores show that 93% of actual normal cases are correctly identified as 

such. Furthermore, 100% of real pneumonia cases in the validation set were correctly recognized. 

For a real-life use case, further evaluation would be required. Production models are generally 

evaluated on an additional test set apart from the training and validation sets. Using just the validation 

set is considered sufficient to compare non-private and differentially private training approaches in 

this paper.  

Development of A Differentially Private Model 

The identical dataset and neural network architecture have been used to ensure an objective 

comparison between the non-private and differentially private model. The difference between both 

approaches is the way how the differentially private model is trained. 
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Differential Privacy is not included in the PyTorch deep learning library by default. Therefore, a 

compatible Differential Privacy library must be used. We have chosen PyTorch-Opacus (formerly known 

as PyTorch-DP). There are additional Differential Privacy libraries available for PyTorch and for the 

TensorFlow deep learning library (e.g., TensorFlow Privacy). 

The key aspect of Differential Privacy in deep learning used in this paper is to add carefully tuned 

statistical noise to the neural network's training process to mask the contribution of individual data 

points (patient x-ray images in this case). Therefore, the risk that inferences could be drawn on 

individuals' data points from the trained model is reduced. 

Since the training process is vital for a better understanding of this approach, the following description 

aims to provide a high-level intuition about how deep neural networks learn from training data. 

Before starting the training process, the following artifacts exist: 

• The training images, each labeled by radiologists with the actual diagnostic outcome ("normal" or 

"pneumonia") 

• An (untrained) network structure that takes x-ray images as input, processes them layer by layer 

to finally predict the class. The network consists of many parameters (called weights and biases), 

determining how the images are processed as they move through the network. 

These parameters are initialized with random numbers before the training process. Therefore, any 

predictions of the neural network are "random guesses" at that time. 

The main element of training is an optimization process where these parameters are iteratively 

adjusted so that the network's predictions better align with the known correct labels of the training 

data (see the description of the Stochastic Gradient Descent Algorithm). 

In more technical terms, an error function (also called loss function), which measures the mismatch 

between the actual labels and the network's predictions, is minimized. Due to the random starting 

position, the network makes many wrong predictions initially. Therefore, the error is high at the 

beginning. The error value is gradually reduced during training as the model makes better predictions 

by learning from the training data. 
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Stochastic Gradient Descent Algorithm 

The following illustration describes the iterative learning process for two parameters weight1 

and weight2 and the corresponding error function: 

 

Figure 26: Stochastic Gradient Descent (SGD) Algorithm for Two Parameters 

A common allegory for this optimization process is to imagine the error function being a 

mountain and a hiker standing at the peak, who wants to reach the valley as quickly as possible. 

Since the mountaineer is surrounded by heavy fog, she only sees her immediate surroundings 

but cannot plan her path downwards further ahead at any given location. 

In neural network training, the method of iteratively finding the path to the valley of the "error 

mountain" is called gradient descent and roughly works as follows: 

1. Make predictions for a randomly sampled subset (called minibatch) of the data based on 

the available knowledge (namely using the current parameters weight1 and weight2). 

2. Calculate the error by comparing the predictions with the known true outcomes (labels) from 

the training data. 

3. Find the direction of the steepest downward slope from the perspective of the current 

position. This is done by calculating the gradient (the derivative of the loss function with 

respect to the parameters). The gradient acts as a signpost to the direction in which the error 

function is decreased by the most amount. This approach corresponds to the hiker's 

scenario, who chooses the direction of steepest descent within her actual limited visual 

range. 

4. Take a few steps in the direction of the steepest downward slope. 

This procedure is repeated until the valley is reached, respectively, the improvement of the error 

value diminishes. 
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The first diagram in Figure 25 shows this optimization procedure in action. The error value improves 

as the network updates its parameters in 1,470 iterations (10 epochs, each with 147 updates since the 

images are processed in batches of 32). 

The goal of using Differential Privacy is to limit the risk of exposing sensitive data from the model's 

training set by providing a provable (statistical) privacy guarantee. In particular, the trained machine 

learning model should not be affected by individual data points from the training images. 

In deep learning, Differential Privacy can be implemented by making the following adjustments to the 

third step in the outlined Stochastic Gradient Descent (SGD) algorithm: 

• Bounding the gradient to limit its sensitivity to individual data points 

• Adding random noise to the gradient calculation 

These adjustments are illustrated in the following figure: 

 

Figure 27: Differentially Private Adjustments to the Gradient Descent Algorithm5 

1. The gradient is calculated according to the usual SGD-algorithm (in a non-private fashion) 

2. The gradient's sensitivity to individual data points is bound (also known as gradient clipping). 

Consequently, the extent to which each data point can impact the model's parameters is also 

limited. The gradient clipping amount is a hyperparameter (called max_grad_norm in Opacus) 

that is defined before training the model. For the medical imaging demo case, we have chosen to 

set max_grad_norm = 2. 

3. To prevent the identification (if a particular data point is included in the training set) a defined 

amount of noise is added to the clipped gradient. The amount of noise is also a hyperparameter 

(called noise_multiplier in Opacus). Higher values increase the privacy guarantee but make 

the training process more difficult and thus negatively impact the model's accuracy. For the 

medical imaging demo, we have chosen a noise_multiplier of 0.65. 
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Integrating Opacus into Machine Learning Workflows 

Opacus (formally known as PyTorch-DP) makes it easy to integrate differential privacy into an 

existing ML pipeline: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Besides importing PrivacyEngine, only the framed code is specific to Differential Privacy training. 

The model is instantiated in the same way as in the non-private case. The same applies to the 

training procedure. A custom function is used, which does not need to be adjusted for achieving 

Differential Privacy (except for optionally reporting privacy parameters after each epoch). Refer 

to the collateral Jupyter notebooks for further details. 

 

from opacus import PrivacyEngine 

model = Cnn().to(device) 

 

# DP specific code: 

optimizer = torch.optim.Adam(model.parameters(), lr = 0.0007) 

privacy_engine = PrivacyEngine( 

    model, 

    batch_size = 32, 

    sample_size = len(training_loader.dataset),       

    alphas = [1 + x / 10.0 for x in range(1, 100)] + list(range(12, 64)) 

    noise_multiplier = 0.65, 

    max_grad_norm = 2.0) 

privacy_engine.attach(optimizer) 

 

# Continue by training the model as usual 

history = train(model = model,  

                optimizer = optimizer, 

                loss_fn = nn.CrossEntropyLoss(), 

                train_dl = training_loader, 

                val_dl = validation_loader, 

                epochs = 25) 
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The training was performed on the same Azure Standard NC 12 GPU Compute Instance. The following 

illustration shows the training progress over 25 epochs: 

 

Figure 28: Progress of Error and Privacy Guarantee during Differentially Private Training 

In this example, ending the training already after the fourth epoch makes sense since it is associated 

with the minimum training and validation error (and, therefore, maximum accuracy). Furthermore, 

additional training decreases the privacy guarantee (reflected by an increasing  value) due to the 

repeated loops through the sensitive training data. 

 

Figure 29: Progress of Accuracy Score and Privacy Guarantee during Differentially Private Training 
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The following table summarizes the model performance based on validation set results: 

Accuracy score: 0.944    auc-score: 0.979 

Classification report Precision Recall F1-Score Support 

Normal 0.92 0.86 0.89 134 

Pneumonia 0.95 1.97 0.96 385 

Micro avg 0.94 0.94 0.94 519 

Macro avg 0.94 0.92 0.93 519 

Weighted avg 0.94 0.94 0.94 519 

Samples avg 0.94 0.94 0.94 519 

Table 7: Validation Set Classification Performance of Differentially Private Training 

The diagram shows what we have also observed in other Differential Privacy training settings: The 

initial loss is significantly higher than in non-private training, and accuracy tends to stay constant for a 

few epochs. We have observed this behavior with other configurations for up to 8 epochs. 

 

Comparison of Results 

The following statistics provide an overview of the performance of both models in comparison: 

 

Metric 

Non-priv. 

model 
DP model 

Accuracy Score 0.981 0.944 

Auc-score 0.999 0.979 

F1-Score Normal 0.96 0.89 

F1-Score Pneumonia 0.99 0.96 

Weighted Avg 0.98 0.94 

Privacy Guarantee  N/A 4.32  

Training Time / epoch 116 s 145 s 

 

The accuracy of the differentially private model is 3.7 percentage points below the performance of the 

non-private model. The other metrics show a similar order of magnitude. The f1-scores show a more 

significant difference in the ability to detect the underrepresented "normal" class. 
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There are several measures which help improve the model performance further: 

Increasing the Size of the Dataset 

The medial dataset was chosen for simplicity and the ability to reproduce results with limited 

computing resources. However, for deep learning standards, 5,000 images are making a relatively small 

dataset.  The following example of a differential private training with the MNIST dataset of handwritten 

digits illustrates the benefits of increasing the training set size: 

 

Choosing the Privacy Parameter Epsilon 

Generally accepted guidelines about desirable or acceptable values of the privacy parameter 

epsilon have yet to be established. 

• Lower values are associated with stronger privacy guarantees and hence desirable from the 

data protection perspective. From the model quality point of view, too aggressive 

configurations (low values of epsilon) should be avoided. 

• Considering the business use case and the amount of risk that we are willing to accept helps 

to make the privacy parameter tangible. It is possible to estimate the risk in monetary terms 

in some financial settings (e.g., the maximum expected amount of increase in insurance 

premium). 

• Researchers from the Harvard University provide preliminary guidance: "As a rule of thumb, 

however,  should be thought of as a small number, between approximately 1/1000 and 1."6 

• In practical applications, strong protection can often be achieved with higher privacy 

budgets. Epsilon is an upper bound measure of the risk and therefore describes a worst-

case scenario. Primarily in use cases of deep learning, research has shown that higher values 

are often acceptable. Some experiments showed that no leakage of individual data points 

from trained deep learning models was possible even at epsilon levels of 50.7 
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Even though there are apparent diminishing returns, the validation accuracy is increased to 95% by 

adjusting the training set size up to 60,000 images. Simultaneously, the privacy guarantee can be 

improved, which is reflected by the reduction of the privacy parameter epsilon. 

 

Reducing the Model Size 

With differentially private training, there is a trade-off between model size and accuracy. A best 

practice recommendation is to reduce the number of parameters since this makes it easier to get good 

results with Differential Privacy. Besides making reductions to the network architecture, also transfer 

learning might be used to achieve this goal as it can reduce the number of parameters that need to 

be trained. 

 

Transfer Learning 

In the medical imaging example, the model was initialized with random parameters (trained from 

scratch). Transfer learning strategies reuse parts of an already trained model. This approach typically 

reduces training time and can also improve results. A Differential Privacy use case could use an existing 

pre-trained model (e.g., from a public x-ray dataset) and perform a differentially private training using 

the private dataset on top of the pre-trained model. 

The following illustration provides a conceptual overview of transfer learning. 

 

Figure 30: Transfer Learning on Medical Images 

The resulting model likely benefits from transfer learning even if the base network was trained on 

images from another (but potentially related) computer vision use case. Even in less related use cases, 

the network is likely able to reuse trained knowledge to detect basic visual concepts (e.g., edges, 

patterns, surfaces). 

Hyperparameter Tuning 

Hyperparameter tuning typically includes trying alternative architectures, model- or training-related 

parameters (e.g., activation functions, learning rate, batch size, optimizers). Furthermore, the 

parameters specific to Differential Privacy (e.g., noise multiplier, gradient clipping, alpha) significantly 

impact the model's performance. Depending on the privacy requirements, these parameters could be 

further relaxed to improve the final model's performance. 
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Conclusion 

The increasing number of severe breaches of sensitive personal data shows that today's disclosure 

limitation practices are often insufficient. Popular data anonymization techniques are vulnerable to 

privacy attacks like re-identifying individuals in sensitive datasets. 

Differential Privacy is the emerging gold standard of privacy protection. It protects user privacy by 

adding carefully tuned random noise to data and computations. 

Practical applications range from primary statistical and analytical use cases to advanced scenarios like 

machine learning and deep learning. We have seen that the introduction of noise leads to a trade-off 

between privacy protection and analytical results accuracy. However, one can often compensate for 

the loss of data utility by adding more data. 

Communication of the concept and its benefits to various stakeholders like data subjects, analytics 

practitioners, regulators, and decision makers is critical. Individuals might show a higher willingness to 

provide personal data if a formal privacy guarantee is given and proven to hold. 

The SmartNoise system is an open source implementation based on the Differential Privacy concept. 

It is developed by Microsoft, Harvard's Institute for Quantitative Social Science, and the School of 

Engineering and Applied Sciences as part of the Open Differential Privacy (OpenDP) initiative. The 

project aims to connect solutions from the research community with the lessons learned from real-

world deployments to make Differential Privacy broadly accessible.  

A vital goal of this paper is to introduce Differential Privacy to practitioners and decision makers. We 

hope that the interactive demo scenarios help you experience the concept in action and apply them 

to your use cases.  
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