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Interactive Demo Case Studies 

We have developed the following Jupyter notebooks so that you can experience the concepts 

discussed in this paper in practice and adapt them to your own use cases. 

 

 

Protecting Statistics Against Reconstruction Attacks 

Learn how attackers might reconstruct sensitive income 

information based on released summary statistics. 

SmartNoise can help you protect personal data against 

reconstruction attacks. 

 

Protecting Sensitive Data Against Re-Identification 

Attacks 

Learn how attackers might combine an anonymized 

medical dataset with other available data to identify 

patients. See how to use SmartNoise to protect personal 

data against re-identification attacks. 

 

 

Privacy-Preserving Statistical Analysis 

Learn how to use SmartNoise to disclose statistical reports 

with the Differential Privacy concept. 

Understand how different levels of privacy guarantees and 

data set sizes impact statistical accuracy. 

 

 

Machine Learning Using a Differentially Private Classifier 

Check out different options to perform differentially 

private machine learning for a classification task. 

Experience how different levels of privacy guarantees and 

data set sizes affect model quality. 

 

 

Generating a Synthetic Dataset for Privacy -Preserving 

Machine Learning 

See how SmartNoise can be used to generate a 

differentially private dataset that can be disclosed without 

privacy concerns. Check out how the synthetic dataset can 

be used for machine learning. 

 

Detect Pneumonia in X -Ray Images while Protecting 

Patients' Privacy 

Discover how to perform differentially private deep 

learning by analyzing medical images. 

 

https://github.com/opendifferentialprivacy/smartnoise-samples/tree/master/whitepaper-demos
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Introduction 

Sensitive and confidential information about individuals is extensively used and shared between 

companies, government entities, research organizations, and other parties. Inadequate usage of this 

kind of information can result in significant consequences, such as harm to an individual's reputation, 

employability, creditworthiness, and insurability. 

Pioneered by Microsoft Research and their collaborators, Differential Privacy is the gold standard for 

protecting individuals' data in applications like preparing and publishing statistical analyses. 

Differential Privacy provides a mathematically measurable privacy guarantee to individual data 

subjects. It offers significantly higher privacy levels than commonly used disclosure limitation practices 

like data anonymization. The latter increasingly shows vulnerability to re -identification attacks ð 

especially as more data about individuals become publicly available.  

This whitepaper provides practical guidance on how personal data can be rigorously protected for 

applications like statistics, machine learning, and deep learning using Differential Privacy. To make the 

beneficial and fascinating concept of Differential Privacy accessible to a broad audience, we refrain 

from discussing the underlying mathematical concepts. Rather, we seek to keep the technical 

descriptions at a high level. Nonetheless, we recommend that readers have background knowledge 

about and understand machine learning concepts.  

Decisions based on artificial intelligence algorithms increasingly impact our lives. There are many open 

questions left for the ongoing debate about ethical challenges.  In collaboration with policy  makers, 

research institutions, and other technology companies, Microsoft is working on principles, best 

practices, and tools for a responsible approach to creating and using artificial intelligence solutions. 

The following diagram provides an overview of Microsoft's Responsible AI framework. 

 

Figure 1: Microsoft Responsible AI Principles  

Differential Privacy is a vital concept for protecting personal data and therefore provides one option 

for covering the privacy part in the "Privacy & Security" section. That said, it is not designed to increase 

the security of systems used to develop or operate machine learning models. Other approaches can 

be leveraged to accomplish this task (e.g., Confidential Machine Learning). 
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Differential Privacy Overview 

The Dilemma of Traditional Data Anonymization Practices 

Many people would intuitively argue as follows: " If we remove the personally identifiable part from the 

records of our datasets before release, then privacy is ensured." Standard practices support this false 

conclusion since data anonymization techniques are prevalent.  

Letõs look at hospital representatives, who aim to release medical treatment insights for research 

purposes to improve future therapi es. They have several options to choose the data categories and 

the level of detail of the disclosed data, as shown in the illustration below. The privacy protection 

objective is to prevent any conclusions about individuals might be drawn from the publishe d data. 

 

Figure 2: Data Anonymization Examples  

The crucial problem with anonymized data is that the released records often include unique 

combinations of variables (digital fingerprints) that someone might link to other publicly ava ilable 

information to re -identify specific people. For instance, research has shown that 87% of Americans can 

be uniquely identified with only three pieces of data: Gender, birthday, and ZIP code.1 

Today's data disclosure practices aim to address this issue by minimizing the number of attributes that 

are particularly vulnerable to re-identification. Also, the level of detail is reduced using age categories 

or only the first digits of the ZIP code, as shown above. A typical goal is to achieve a standard known 

as k-anonymity. For example, a released dataset satisfies 5-anonymity if at least five records exist for 

each combination of gender, age, and ZIP code. While this approach likely reduces the hit rate that an 

attacker can achieve, it is far from solving the problem and fails to provide any reliable privacy 

guarantee to individuals. 
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Of course, one can continue by reducing or coarsening 

the data even further before release. However, this can 

eventually erode the utility of the released data also for 

legitimate applications. 

Microsoft researcher Cynthia Dworkõs quote brings it to 

the point: " Anonymized data isn't." As long as useful 

information about individuals is included in the data, it is vulnerable to re -identification attacks (and 

therefore not anonymous). If we want to provide data that cannot be re -identified, we have to remove 

so much information that, in the end, the data is no longer useful.  

In fact, the risk of re-identification of anonymized data is  more significant than the above example 

suggests: 

1. Besides the obvious demographic attributes (e.g., age, gender, ZIP code), other information can be 

used for linkage attacks (for instance, diagnostic codes in statistics from other hospitals referring 

to the same individuals). 

2. At the time of publication, it is unknown which information about an individual becomes available 

in the future and might then be exploited for linkage attacks. That said, once released, it is de facto 

impossible to revoke the data from the internet.  

3. Attackers can rely on growing databases about individuals and sophisticated re-identification 

techniques, which further erodes the effectiveness of current anonymization practices. The next 

chapter shows how attackers might exploit statistical summary data to reproduce parts of an 

original dataset. 

A spectacular example of a sophisticated re-identification attack took place in the context of the 

"Netflix Prize" competition. In 2006, Netflix launched a public competition to improve it s movie rating 

algorithm and therefore published an anonymized dataset of their subscribers' movie ratings. As 

shown in the following figure, the dataset did not include any demographic data or user identifiers 

(except for a user ID for being able to combine the ratings within the dataset). 

 

Figure 3: Re-Identification Attack in the Context of the "Netflix Prize" Competition  

 

A few weeks after release, researchers from the University of Texas at Austin have shown that they 

could uncover many customers' real names from the anonymized dataset.2 

The attack was performed by linking the entries to corresponding ratings of the public IMDb database, 

where some of the Netflix subscribers also provided ratings using their real identity. The key for 

òAnonymized data isnõt.ó 

(Cynthia Dwork) 
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combining the records was the ratings themselves, although there were many gaps and even 

inconsistencies between the entries the same person made in both databases. 

The researchers concluded that if an attacker knows the approximate date when a subscriber rated six 

movies, they would be able to identify him or her in 99% of the attacks. Even when the attacker's 

knowledge about the time of rating and the score is imprecise and totally wrong in some cases, a 

significant hit rate can still be achieved. 

Another disturbing data linkage attack was performed using the public New York City taxi dataset, 

which contains data about yellow cab rides, including date and time of pick -ups and drop-offs, number 

of passengers, destination, and fare amount. It does not contain any personally identifiable information 

about the passengers. However, it is relatively simple to link this data to information made available 

with paparazzi photos published on gossip websites. By then linking GPS information, it was easy to 

find out the celebrities' destination addresses, the amount of fare, and the tips that the VIPs had given. 

 

Figure 4: Re-Identifying Celebrity Taxi Ride Information        Image sources: medium.com, gawker.com 
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The Differential Privacy Concept 

The critical ambition behind Differential Privacy is that no harm should be done to any person because 

their record is part of statistical analysis. An example of economic damage caused by private data 

leakage might occur if an individual (letõs call him Benjamin) agrees to participate in a medical study. 

For instance, the findings of the study 

could include the detection of pre -existing 

health conditions. If a potential employer 

becomes aware of this medical 

information, it could cause them to favor 

other candidates' applications over 

Benjamin's. 

Differential Privacy aims to enable deriving general insights from the statistical analyses (e.g., the 

general correlation between smoking and the risk of lung cancer) while at the same time reliably 

protecting the  personal data of Benjamin (and the other participants) on an individual level. 

So what would be a perfect way to prevent potential leakage of Benjamin's record? 

Not participating at all! The "opt -out-scenario" is an essential point of reference in the Differential 

Privacy concept. Let us consider two datasets by way of example: 

 

Figure 5: Original Dataset and Opt -Out Scenario  

The only difference between both datasets is that dataset B does not contain Benjamin's record. 

Therefore, it is impossible that analyzing this data results in specific insights about Benjamin.1

Differential Privacy requires that any analytical results on dataset A (including Benjamin's record) are 

identical (or at least very close) to the opt-out scenario results. Indeed, the distinction between both 

cases is the reason for using the term Differential Privacy. 

Differential Privacy aims to mask the contribution of Benjamin's record by adding a precisely tuned 

amount of random noise to the data.  Let us take a simple example known as the randomized response 

 
1 We might derive general insights about the world that can also be attributed to Benjamin without 

him participating: If the study reveals that smoking causes lung cancer and if we find out that Benjamin 

is a smoker, we can conclude that he has an increased risk of getting lung cancer. That said, this risk 

exists regardless of Benjaminõs decision whether or not to participate in the study. 

òComputer science got us into this mess. 

Can computer science get us out of it?ó 

(Latanya Sweeney) 
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technique in market and social research. This time, we want to learn about taxpayers' compliance by 

asking the participants if they have ever evaded taxes. There is a strong motivation for tax cheaters to 

hide their real behavior, so they appear to meet social norms. Also, leakage of this information could 

have severe legal consequences. 

What can we do to guarantee the privacy of the participants' sensitive data? And specifically, how can 

we ensure that no harm might occur to participants of the survey (not even to the tax cheaters)?  

We can add random noise at the data acquisition stage of our study by asking the participants to make 

their answers dependent on coin tosses. To guarantee privacy in this setting, no one but the participant 

may be aware of the result of the coin tosses. 

 

Figure 6: Randomized Response Technique  

This method lets the participant toss the coin and answer truthfully if the result is "heads." In case the 

result shows "tails", then the participant flips the coin for a second time and provides a random answer 

based on the outcome. As mentioned, no one but the participant is aware of the result of the tosses. 

No ot her stakeholder knows if the provided answer corresponds to the truth or not.  

Assuming the design is convincing enough for the participants to comply with these rules, we can 

calculate the relationship between reported and actual tax evaders as follows: 

ὙὩὴέὶὸὩὨ χυϷz ὝὶόὩ  ςυϷzὝὶόὩ  

We expect that 75% of the answers from actual tax evaders to be "Yes" (50% truthfully answered plus 

25% by chance). Additionally, 25% of tax-compliant respondents give a wrong answer of "Yes" because 

of their second coin flip (false positives). We can rewrite the formula to estimate the actual share of 

tax evaders depending on our survey results: 

ὝὶόὩ ςz ὙὩὴέὶὸὩὨπȢυ 

For instance, if 45% of the participants responded, "Yes," we expect that 2 * 0.45 ð 0.5 = 40% of the 

participants have indeed evaded taxes. 

Due to the introduction of random noise, we face statistical imprecision of the result. It turns out that 

this error can be reduced by increasing the number of part icipants in the study. 
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In practice, noise is introduced computationally using more sophisticated algorithms than our simple 

example. Noise can be added at various process steps: during data acquisition, data aggregation, 

analysis, and release of the results. We will show various examples in the following chapters. 

The amount of noise that is introduced to the computation must be chosen carefully. On the one hand, 

higher quantities of noise increase the level of privacy. On the other side, it is more difficult to derive 

reliable statistical results when the noise level is too high. There is a tunable knob available to adjust 

the amount of noise in the trade -off between privacy and utility. This knob is known as the privacy 

parameter epsilon (e). It is also called the privacy budget. 

 

 

Figure 7: Tuning the Amount of Noise Using the Privacy Parameter e 

Note the inverse relationship between epsilon and privacy: small epsilon values lead to higher levels 

of protection and vice versa. 
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Differential Privacy Applications 

Differential Privacy supports a broad spectrum of analytical use cases ranging from generating basic 

statistics (as seen above) to complex machine learning and deep learning applications, as we 

demonstrate in these chapters. Here is an overview of typical applications: 

 

 

Figure 8: Examples of Differential Privacy Applications  

With roots going back to the 1960s and its formal introduction by Cynthia Dwork et al. in 2006, 

Differential Privacy benefits from a mature scientific foundation today.  

It is also gaining significant traction in practical implementations beyond academia. It seems natural 

that the big tech companies belong to the pioneers, who implement Diff erential Privacy in large-scale 

production use cases. 

To keep customers' devices secure and up to date, tech companies use diagnostic data to gain insights 

about the quality and user experience. As an example, Microsoft uses Differential Privacy to protect 

diagnostic data on Windows 10 devices based on what is known as the "local model". In this 

implementation, statistical noise is added to the local machine's diagnostic information before 

transmission to Microsoft. 

Differential Privacy is only one part of a comprehensive and layered security and privacy protection 

strategy that also includes security controls, auditing, policies, user consent, data minimization, 

encryption, and other measures. 

As one of the early adopters, the Windows team benefited from wo rking with Microsoft Research, who 

invented the Differential Privacy concept with their associates. The current implementation that 
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protects diagnostic data uses elements of SmartNoise and contributes enhancements back to the open 

source platform so that t hese innovations become available to the public. 

Other tech companies like Apple and Google use Differential Privacy for similar use cases. These 

examples benefit from high amounts of data thanks to their extensive device bases. For example, 

Windows 10 is used on more than one billion devices today, and therefore, the accuracy loss caused 

by Differential Privacy is negligible. 

The US Census Bureau introduced a high-profile milestone for Differential Privacy and decided to use 

the concept to improve the prot ection of personal and household data for the 2020 census. 

The bureau's track record of implementing organizational and technical measures to better protect 

personal data goes back to an early census in 1840. Since 2000, the primary technique used to prevent 

disclosure of individual data is "household swapping".  

However, given the availability of increased computational resources and large datasets that might be 

exploited for reconstruction attacks, the bureau decided to look for a better alternative. It a nnounced 

to use Differential Privacy for the 2020 census. 
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Differential Privacy Considerations  
  

Differential Privacy is superior to traditional disclosure limitation techniques in many aspects. It 

is currently the only technique with a formal privacy guarantee that scales even to subsequent 

analyses. Researchers argue that Differential Privacy can influence data protection practices to a 

similar extend as public key infrastructure (PKI) influenced cryptography. 

Individuals will likely be more willing to provide personal data (e.g., participating in surveys or 

medical studies) if a comprehensible privacy guarantee is given. 

The same applies to organizations that own personal data. Due to the risk of privacy breaches 

that might affect an organization's reputation or lead to severe legal consequences, 

organizations are very cautious about sharing or collaborating on personal data. However, there 

are societal opportunity costs caused by this reluctance. Many organizations do not own enough 

data to derive relevant insights (e.g., about rare diseases). Being able to collaborate on such data 

with other entities would be hig hly beneficial for the society. 

One problem of Differential Privacy is that the concept is less intuitive and more difficult to 

explain. Convincing analytics and machine learning practitioners can also be challenging since 

their work results will be less accurate in many cases. Other stakeholders might find it disturbing 

to accept the distortion of statistical results ð especially if the data for producing more accurate 

results is available. 

However, the alternative to Differential Privacy will not be an unprotected release of data in most 

cases. The data owner or privacy laws might require extensive use of traditional disclosure 

limitation techniques if no other protection is available. Consider how much information might 

have to be removed to satisfy 5-anonymity for all records in a database. The resulting loss of the 

utility of statistical analyses will be substantial in many cases.  

Furthermore, the accuracy impact due to the noise can be compensated by adding more data, 

as we will investigate in the next chapters. In fact, the regularization techniques used in 

Differential Privacy can also benefit machine learning scenarios since the models tend to 

generalize better to unseen data. 

The experience with Differential Privacy usage in the 2020 census in the United States with 

regard to effectiveness and stakeholder acceptance will probably be crucial for its adoption in 

the upcoming years. 

We see that stakes for data privacy become higher due to severe, large-scale breaches, growing  

public awareness, and increased regulations like the GDPR. This might be a strong driver for a 

rigorous and formal privacy protection framework like Differential Privacy.   

Differential Privacy might help implement the GDPR right of individuals to request that their 

records are deleted. Applying this requirement to a n existing machine learning model is 

challenging. In practice, it is not known which traces of an individual's record are contained in 

the trained model. The model would effectively have to be retrained, just without the data of 

the individual , who exercised his or her GDPR right. As we have seen, Differential Privacy is based 

on this opt -out scenario by masking the contribution of individua l data points. We shall see if 

jurisdiction accepts the Differential Privacy concept to satisfy the òright to be forgottenó. 
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The SmartNoise System 

SmartNoise is jointly developed by Microsoft and Harvard 's Institute for Quantitative Social Science 

(IQSS) and the School of Engineering and Applied Sciences (SEAS) as part of the Open Differential 

Privacy (OpenDP) initiative. 

The project aims to connect solutions from the research community with the lessons learned from real-

world deployments to make Differen tial Privacy broadly accessible.  

SmartNoise is designed as a collection of components that can be flexibly configured to enable 

developers to use the right combination for their environments.  

 

Figure 9: The SmartNoise System  

The SmartNoise tools primarily focus on the "global model " of Differential Privacy, as opposed to the 

"local model." In the global Differential Privacy model, a trusted data collector is presumed to have 

access to unprotected  data and wishes to protect pub lic releases of aggregate information.  

The core library includes implementations of the most common mechanisms and statistics and some 

utility functions like filtering, imputation, and others. It has an interface for composing operations in 

an analysis graph that can be validated for privacy properties. This validator is the critical functionality, 

as it ensures users are providing formal privacy assurances.  

The core library is designed to be pluggable, allowing the inclusion of new algorithms, including both 

the "aggregate and add noise" and "sample and aggregate" approaches. The primary releases 

available in the library and the mechanisms for generating these releases are shown below.  

Statistics Mechanisms Utilities 

¶ Count 

¶ Histogram 

¶ Mean 

¶ Quantiles 

¶ Sum 

¶ Variance / Covariance 

 

¶ Gaussian 

¶ Analytic Gaussian 

¶ Geometric 

¶ Exponential 

¶ Laplace 

¶ Clamping 

¶ Cast 

¶ Clamping 

¶ Digitize 

¶ Filter 

¶ Imputation  

¶ Transform 

¶ Synthesizers to generate 

differentially private 

versions of datasets 
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On top of the core library, the platform has a n SQL data access layer that allows users to compose 

analysis graphs using the SQL language. This makes it easy to port over existing dashboards and 

analytics workflows to be differentially private. The SQL language is a limited subset of the operations 

that can be specified in the full analysis graph.  

The SQL data access layer transparently intercepts calls to backend databases that support SQL-92, 

applying Differential Privacy before returning results. The library includes support for SQL Server, 

PostgreSQL, Spark, SQLite, Pandas, Dataverse, and Presto.  

Because this system's SQL support functions as a data access layer, it is straightforward to add support 

for other backends, such as Oracle or DB2. The platform provides interfaces that others can extend, 

and more databases will be added in the future. 

To ease deployment, the platform includes a sample hosted service that shows users how to compose 

heterogeneous queries over the same dataset, fronted by a REST-based endpoint. Users learn how 

this can be hosted in a cloud environment backed by the open -source MLflow execution environment, 

and how to track combined epsilon across queries that use IBM's Differential Privacy libraries and a 

differentially private SGD using PyTorch. This sample service keeps track of cumulative privacy cost 

only but could serve as a starting point for something that prevents query after the budget has been 

spent.   

Finally, the platform provides a stochastic evaluator tool that can drive any black box privacy algorithm 

to test for  adherence to privacy promises and checks the accuracy and bias. 

Protecting against Privacy Attacks 

Reconstructing Original Data from Published Statistics  

Let us play an attacker's role trying to reconstruct sensitive information of a demographic dataset 

based on published summary statistics. In a second step, we use SmartNoise to create a differentially 

private version of the summary statistics and attempt to perform the attack again.  

The dataset is a simplified sample of US residents' demographic records from the Public Use Microdata 

Sample (PUMS) statistics. It contains 1,000 records with the following information: Education, ethnicity, 

age, gender, marital status, and income. Our attacker has only access to the published summary 

statistics of the income, which is considered sensitive information that he aims to recover. 

 

Figure 10: Anatomy of a Database Reconstruction Attack  
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Protection is provided to the released information by statistical disclosure limitation similar to the k -

anonymity principle explained above: No information (means or medians) is released for the 

subgroups (combinations of education, ethnicity, age, gender, marital status) when the size is smaller 

than five records (similar to 5-anonymity). 

The reconstruction attack approach is relatively straightforward: We aim to generate a dataset 

containing 1,000 records that is consistent with the published summary statistics. This is basically a 

combinatoric task with a significant complexity level due to the many possible variable interactions. 

However, in principle, it is nothing more than solving a giant puzzle.  

We are using the Z3 Theorem Prover from Microsoft Research to accomplish this task. Z3 is used to 

solve mathematical equations, puzzles, games like Sudoku, and other combinatoric problems. 

For the reconstruction attack, we must consider a couple of issues. Firstly, Z3 is probably able to 

reconstruct a part of the database, but not all records. The amount of correctly reconstructable data 

depends on the quantity of the released information and its detail level. Secondly, there is typically 

more than a single way to reconstruct the data that satisfies the summary statistics' constraints. Thirdly, 

an attacker might leverage additional information from outside the stati stical release about individuals 

in the database to improve the attack results. 

The complementary Jupyter notebook 1-reconstruction-attack includes several attack scenarios that 

can be tuned to experience the effect of additional data, changing the level of disclosure limitation 

and further adjustments. 

In our case (minimum of 5 records per subgroup, no additional info rmation leveraged, the statistical 

release includes average and median), we get the following results: 

¶ 120 (12.0 %) incomes reconstructed exactly 

¶ 257 (25.7 %) incomes reconstructed within $2,000 

¶ 380 (38.0 %) incomes reconstructed within $5,000 

Note that we  can assess the attack's quality since we have access to the original dataset for comparison. 

A real attacker would not have this luxury. 

So, how can we use SmartNoise to successfully protect the original data against such re-identification 

attacks? We generate differentially private versions of the summary statistics with a privacy parameter 

of 1.5 to find out. The results show that this privacy level is sufficient to prevent the reconstruction 

attack. Z3 cannot generate a dataset that is consistent with the differentially private releases of the 

summary statistics. The random noise caused too many contradictions to generate a matching dataset.  

We have discussed that the price of achieving this level of privacy protection is some loss in the 

accuracy of the released data. The following diagram provides an impression of this effect by 

comparing the income distribution of the original and differentially private release:  

https://github.com/opendifferentialprivacy/smartnoise-samples/blob/master/whitepaper-demos/1-reconstruction-attack.ipynb
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Figure 11: Income Distribution of Original Data Compared to Differentially Private Version ( e = 1.5)  

Even though the database contains only 1,000 records, both histograms look relatively similar when a 

privacy budget of 1.5 is used. We investigate the effect of dataset size and privacy level on the accuracy 

in more detail in the next chapters. 

Re-Identification Attack  

In this section, we go one step further by trying to re -identify individuals from a medical dataset. The 

approach is similar to the discussed examples of revealed Netflix subscribers and New York taxi 

passengers.  

Our showcase compares the effectiveness of anonymization and Differential Privacy. The 

complementary Jupyter notebook 2-reidentification -attack can be used to experience these scenarios 

in action. The flow of the demonstration is as follows: 

https://github.com/opendifferentialprivacy/smartnoise-samples/blob/master/whitepaper-demos/2-reidentification-attack.ipynb































































