

Learning Azure
Cognitive Services

Use Cognitive Services APIs to add AI capabilities to
your applications

Leif Larsen

BIRMINGHAM - MUMBAI

Learning Azure Cognitive Services
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing or its dealers and distributors, will be held liable for any damages caused
or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

This book is available to buy in print format from book retailers with the title
"Learning Azure Cognitive Services, Third Edition", ISBN 978-1-78980-061-6.

Commissioning Editor: Pavan Ramchandani
Acquisition Editor: Chaitanya Nair
Content Development Editors: Rohit Kumar Singh
Technical Editor: Ketan Kamble
Copy Editor: Safis Editing
Project Coordinator: Vaidehi Sawant
Proofreader: Safis Editing
Indexers: Aishwarya Gangawane
Graphics: Alishon Mendonsa
Production Coordinator: Shantanu Zagade

First published: October 2018

Production reference: 1311018

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.
ISBN 978-1-78995-665-8

www.packtpub.com

www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and
videos, as well as industry leading tools to help you plan your personal development
and advance your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and

Videos from over 4,000 industry professionals
• Learn better with Skill Plans built especially for you
• Get a free eBook or video every month
• Mapt is fully searchable
• Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters, and receive exclusive discounts and offers on
Packt books and eBooks.

https://mapt.io/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/

Contributors

About the author
Leif Larsen is a software engineer based in Norway. After earning a degree in
computer engineering, he went on to work with the design and configuration of
industrial control systems, for the most part, in the oil and gas industry. Over the last
few years, he has worked as a developer, developing and maintaining geographical
information systems, working with .NET technology. Today, he is working with
a start-up, developing a brand new SaaS product. In his spare time, he develops
mobile apps and explores new technologies to keep up with the high-paced
tech world.

You can find out more about him by checking out his blog, "Leif Larsen", and
following him on Twitter (@leif_larsen) and LinkedIn (lhlarsen).

Acknowledgments

Writing a book requires a lot of work from a team of people. I would like to
give a huge thanks to the team at Packt Publishing, who have helped make this
book a reality. Specifically, I would like to thank Rohit Kumar Singh and Pavan
Ramchandani, for excellent guidance and feedback for each chapter, and Denim
Pinto and Chaitanya Nair, for proposing the book and guiding me through the
start. I also need to direct a thanks to Abhishek Kumar for providing good
technical feedback.

Also, I would like to say thanks to my friends and colleagues who have been
supportive and patient when I have not been able to give them as much time
as they deserve.

Thanks to my mom and my dad for always supporting me.

Thanks to my sister, Susanne, and my friend, Steffen, for providing me with ideas
from the start, and images where needed.

I need to thank John Sonmez for his great work, without which, I probably would
not have got the chance to write this book.

Finally, I want to thank my girlfriend, Christin, for her amazing support and
patience through the writing process.

About the reviewer
Abhishek Kumar is a Microsoft Azure MVP and has worked with multiple clients
worldwide on modern integration strategies and solutions. He started his career in
India with Tata Consultancy Services, before taking up multiple roles as consultant
at Cognizant Technology Services and Robert Bosch GmbH.

He has published several articles on modern integration strategy over the Web and
Microsoft TechNet wiki. His areas of interest include technologies such as Logic
Apps, API Apps, Azure Functions, Cognitive Services, PowerBI, and Microsoft
BizTalk Server.

His Twitter username is @Abhishekcskumar.

I would like to thank the people close to my heart, my mom, dad,
and elder bothers, Suyasham and Anket, for the their continuous
support in all phases of life.

Packt is Searching for Authors Like You
If you're interested in becoming an author for Packt, please visit authors.packtpub.
com and apply today. We have worked with thousands of developers and tech
professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that
we are recruiting an author for, or submit your own idea.

http://authors.packtpub.com/
http://authors.packtpub.com/

[i]

Table of Contents
Preface vii
Chapter 1: Getting Started with Azure Cognitive Services 1

Cognitive Services in action for fun and life-changing purposes 1
Setting up the boilerplate code 2
Detecting faces with the Face API 9
An overview of different APIs 19

Vision 19
Computer vision 19
Face 19
Video indexer 20
Content moderator 20
Custom vision service 20

Speech 20
Bing Speech 20
Speaker recognition 21
Translator speech API 21

Language 21
Bing Spell Check 21
Language Understanding Intelligent Service (LUIS) 21
Text analytics 22
Translator Text API 22

Knowledge 22
Project Academic Knowledge 22
Knowledge exploration 22
Recommendations solution 23
QnA Maker 23
Project Custom Decision Service 23

Search 23
Bing Web Search 24
Bing Image Search 24
Bing Video Search 24
Bing News Search 24

Table of Contents

[ii]

Bing Autosuggest 24
Bing Visual Search 25
Bing Custom Search 25
Bing Entity Search 25

Getting feedback on detected faces 25
Summary 34

Chapter 2: Analyzing Images to Recognize a Face 35
Analyze an image using the Computer Vision API 36

Setting up a chapter example project 36
Generic image analysis 40
Recognizing celebrities using domain models 47
Utilizing optical character recognition 48
Generating image thumbnails 51

Diving deep into the Face API 52
Retrieving more information from the detected faces 53
Deciding whether two faces belong to the same person 54
Finding similar faces 57
Grouping similar faces 62

Adding identification to our smart-house application 66
Creating our smart-house application 66
Adding people to be identified 66

Creating a view 66
Adding person groups 68
Adding new persons 70
Associating faces with a person 72
Training the model 72
Additional functionality 74

Identifying a person 74
Knowing your mood using the Face API 77

Getting images from a web camera 78
Letting the smart house know your mood 81

Automatically moderating user content 85
Types of content moderation APIs 85

Image moderation 86
Text moderation 86

Moderation tools 86
Using the review tool 87
Other tools 89

Building your own image classifiers 90
Building a classifier 90
Improving the model 90
Using the trained model 91

Summary 91

Table of Contents

[iii]

Chapter 3: Analyzing Videos 93
Diving into Video Indexer 93

General overview 93
Typical scenarios 94
Key concepts 94

Unlocking video insights using Video Indexer 95
How to use Video Indexer 96

Through a web portal 96
Video Indexer API 98

Summary 101
Chapter 4: Letting Applications Understand Commands 103

Creating language-understanding models 103
Creating an application 104
Recognizing key data using entities 105
Understanding what the user wants using intents 108
Simplifying development using prebuilt models 109
Prebuilt domains 111

Training a model 113
Training and publishing the model 113
Connecting to the smart house application 116
Model improvement through active usage 121

Visualizing performance 121
Resolving performance problems 122
Active learning 124

Summary 125
Chapter 5: Speaking with Your Application 127

Converting text to audio and vice versa 127
Speaking to the application 128
Letting the application speak back 135

Audio output format 135
Error codes 136
Supported languages 136

Utilizing LUIS based on spoken commands 136
Knowing who is speaking 139

Adding speaker profiles 141
Enrolling a profile 146
Identifying the speaker 149

Verifying a person through speech 153
Customizing speech recognition 159

Creating a custom acoustic model 159
Creating a custom language model 160
Deploying the application 160

Table of Contents

[iv]

Translating speech on the fly 161
Summary 161

Chapter 6: Understanding Text 163
Setting up a common core 163

New project 164
Web requests 164
Data contracts 167

Correcting spelling errors 168
Extracting information through textual analysis 172

Detecting language 173
Extracting key phrases from text 175
Learning whether a text is positive or negative 177

Translating text on the fly 179
Translating text 180
Converting text script 180
Working with languages 181

Detecting the language 181
Getting supported languages 182

Summary 184
Chapter 7: Building Recommendation Systems for Businesses 185

Providing personalized recommendations 186
Deploying the Recommendation Solution template in Azure 187
Importing catalog data 189
Importing usage data 190
Training a model 191

Starting to train 191
Verifying the completion of training 193

Consuming recommendations 195
Recommending items based on prior activities 200

Summary 201
Chapter 8: Querying Structured Data in a Natural Way 203

Tapping into academic content using the academic API 204
Setting up an example project 204

Interpreting natural language queries 205
Finding academic entities in query expressions 209
Calculating the distribution of attributes from academic entities 212
Entity attributes 216
Creating the backend using the Knowledge Exploration Service 218
Defining attributes 218
Adding data 219
Building the index 219

Table of Contents

[v]

Understanding natural language 220
Local hosting and testing 221
Going for scale 223

Hooking into Microsoft Azure 224
Deploying the service 224

Answering FAQs using QnA Maker 225
Creating a knowledge base from frequently asked questions 226
Training the model 228
Publishing the model 230
Summary 231

Chapter 9: Adding Specialized Searches 233
Searching the web using the smart-house application 233

Preparing the application for web searches 234
Searching the web 236

Getting the news 240
News from queries 240
News from categories 243
Trending news 244

Searching for images and videos 244
Using a common user interface 244
Searching for images 246
Searching for videos 250

Helping the user with autosuggestions 253
Adding autosuggest to the user interface 253
Suggesting queries 254

Search commonalities 255
Languages 256
Pagination 256
Filters 257

Safe search 257
Freshness 257

Errors 258
Searching for visual content using Bing Visual Search 258

Sending a request 258
Receiving a response 259

Adding a custom search 260
Typical workflow 260

Consuming the search instance 260
Summary 261

Table of Contents

[vi]

Chapter 10: Connecting the Pieces 263
Completing our smart-house application 263

Creating an intent 264
Updating the code 265

Executing actions from intents 265
Searching news on command 267
Describing news images 270

Real-life applications using Azure Cognitive Services 271
Uber 271
DutchCrafters 272
CelebsLike.me 273
Pivothead 273
Zero Keyboard 274
The common theme 274

Where to go from here 274
Summary 275

Appendix A: LUIS Entities 277
LUIS prebuilt entities 277

Appendix B: License Information 279
Video Frame Analyzer 279
OpenCvSharp3 280
Newtonsoft.Json 281
NAudio 281

Definitions 281
Grant of Rights 282

Conditions and Limitations 282

Another Book You May Enjoy 283
Index 287

[vii]

Preface
Artificial intelligence and machine learning are complex topics, and adding such
features to applications has historically required a lot of processing power, not to
mention tremendous amounts of learning. The introduction of Azure Cognitive
Services gives developers the possibility to add these features with ease. It allows us
to make smarter and more human-like applications.

This book aims to teach you how to utilize the APIs from Azure Cognitive
Services. You will learn what each API has to offer and how you can add it to your
application. You will see what the different API calls expect in terms of input data
and what you can expect in return. Most of the APIs in this book are covered with
both theory and practical examples.

This book has been written to help you get started. It focuses on showing how to use
Azure Cognitive Services, keeping current best practices in mind. It is not intended
to show advanced use cases, but to give you a starting point to start
playing with the APIs yourself.

Who this book is for
This book is for .NET developers with some programming experience. It is assumed
that you know how to do basic programming tasks as well as how to navigate in
Visual Studio. No prior knowledge of artificial intelligence or machine learning is
required to follow this book.

It is beneficial, but not required, to understand how web requests work.

Preface

[viii]

What this book covers
Chapter 1, Getting Started with Azure Cognitive Services, introduces Azure Cognitive
Services by describing what it offers and providing some basic examples.

Chapter 2, Analyzing Images to Recognize a Face, covers most of the image APIs,
introducing face recognition and identification, image analysis, optical character
recognition, and more.

Chapter 3, Analyzing Videos, introduces the Video Indexer API.

Chapter 4, Letting Applications Understand Commands, goes deep into setting up the
Language Understanding Intelligent Service (LUIS) to allow your application to
understand the end users' intentions.

Chapter 5, Speaking with Your Application, dives into different speech APIs, covering
text-to-speech and speech-to-text conversions, speaker recognition and identification,
and recognizing custom speaking styles and environments.

Chapter 6, Understanding Text, covers a different way to analyze text, utilizing
powerful linguistic analysis tools and much more.

Chapter 7, Building Recommendation Systems for Businesses, covers the
Recommendation API.

Chapter 8, Querying Structured Data in a Natural Way, deals with the exploration of
academic papers and journals. Through this chapter, we look into how to use the
Academic API and set up a similar service ourselves.

Chapter 9, Adding Specialized Search, takes a deep dive into the different search
APIs from Bing. This includes news, web, image, and video search as well as
auto suggestions.

Chapter 10, Connecting the Pieces, ties several APIs together and concludes the book by
looking at some natural steps from here.

Appendix A, LUIS Entities, presents a complete list of all pre-built LUIS entities.

Appendix B, License Information, presents relevant license information for all third-
party libraries used in the example code.

Preface

[ix]

To get the most out of this book
• To follow the examples in this book, you will need Visual Studio 2015

Community Edition or later. You will also need a working internet
connection and a subscription to Microsoft Azure; a trial subscriptions
is OK too.

• To get the full experience of the examples, you should have access to a web
camera and have speakers and a microphone connected to the computer;
however, neither is mandatory.

Download the EPUB/mobi and example code files
An EPUB and mobi version of this book is available free of charge on Github.
You can download them and the code bundle at https://github.com/
PacktPublishing/Learning-Azure-Cognitive-Services.

You can download the example code files for this book from your account at www.
packt.com. If you purchased this book elsewhere, you can visit www.packt/support
and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at www.packt.com.
2. Select the SUPPORT tab.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box and follow the

onscreen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR/7-Zip for Windows
• Zipeg/iZip/UnRarX for Mac
• 7-Zip/PeaZip for Linux

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

https://github.com/PacktPublishing/Learning-Azure-Cognitive-Services
https://github.com/PacktPublishing/Learning-Azure-Cognitive-Services
www.packt/support
www.packt.com
https://github.com/PacktPublishing/

Preface

[x]

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://www.packtpub.com/sites/
default/files/downloads/9781789956658_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter
handles. For example; "This can be achieved when we put some content into the
DelegateCommand.cs file."

A block of code is set as follows:

private string _filePath;
private IFaceServiceClient _faceServiceClient;

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

private string _filePath;
private IFaceServiceClient _faceServiceClient;

Bold: Indicates a new term, an important word, or words that you see on the screen,
for example, in menus or dialog boxes, also appear in the text like this. For example:
"Open Visual Studio and select File | New | Project."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book's title
in the subject of your message. If you have questions about any aspect of this book,
please email us at questions@packtpub.com.

https://www.packtpub.com/sites/default/files/downloads/9781789956658_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789956658_ColorImages.pdf

Preface

[xi]

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book we would be grateful
if you would report this to us. Please visit, http://www.packtpub.com/submit-
errata, selecting your book, clicking on the Errata Submission Form link, and
entering the details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location address
or website name. Please contact us at copyright@packtpub.com with a link to
the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
please visit http://authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and use
your unbiased opinion to make purchase decisions, we at Packt can understand what
you think about our products, and our authors can see your feedback on their book.
Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

[1]

Getting Started with Azure
Cognitive Services

You have just started on the road to learning about Azure Cognitive Services. This
chapter will serve as a gentle introduction to the services that it offers. The end goal
is to understand a bit more about what these Cognitive Services APIs can do for you.
By the end of this chapter, we will have created an easy-to-use project template. You
will have learned how to detect faces in images and have the number of faces spoken
back to you.

Throughout this chapter, we will cover the following topics:

• Applications that already use Azure Cognitive Services
• Creating a template project
• Detecting faces in images using a Face API
• Discovering what Azure Cognitive Services can offer
• Doing text-to-speech conversion using the Bing Speech API

Cognitive Services in action for fun and
life-changing purposes
The best way to introduce Azure Cognitive Services is to see how it can be used
in action. Microsoft (as well as other companies) has created a lot of example
applications to show off its capabilities. Several may be seen as silly, such as the
How-Old.net (http://how-old.net/) image analysis and the what if I were that
person application. These applications have generated quite some buzz, and they
show off some of the APIs in a good way.

http://how-old.net/

Getting Started with Azure Cognitive Services

[2]

The one demonstration that is truly inspiring, though, is the one featuring a visually
impaired person. Talking computers inspired him to create an application to allow
blind and visually impaired people to understand what is going on around them.
The application has been built upon Azure Cognitive Services. It gives us a good idea
of how these APIs can be used to change the world, for the better. Before moving on,
head over to https://www.youtube.com/watch?v=R2mC-NUAmMk and take a peek
into the world of Azure Cognitive Services.

Setting up the boilerplate code
Before we start diving into the action, we will go through some initial setup. More
to the point, we will set up some boilerplate code that we will utilize throughout
this book.

To get started, you will need to install a version of Visual Studio, preferably Visual
Studio 2015 or later. The Community Edition will work fine for this purpose. You do
not need anything more than what the default installation offers.

You can find Visual Studio 2017 at https://www.microsoft.com/
en-us/download/details.aspx?id=48146.

Throughout this book, we will utilize the different APIs to build a smart-house
application. The application will be created to see how a futuristic house might
appear. If you have seen the Iron Man movies, you can think of the application as
resembling Jarvis, in some ways.

In addition, we will be making smaller sample applications using the Cognitive
Services APIs. Doing so will allow us to look at each API, even those that did not
make it to the final application.

What's common with all the applications that we will build is that they will be
Windows Presentation Foundation (WPF) applications. This is fairly well known,
and allows us to build applications using the Model-View-ViewModel (MVVM)
pattern. One of the advantages of taking this road is that we will be able to see the
API usage quite clearly. It also separates code so that you can bring the API logic to
other applications with ease.

https://www.youtube.com/watch?v=R2mC-NUAmMk
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/

Chapter 1

[3]

The following steps describe the process of creating a new WPF project:

1. Open Visual Studio and select File | New | Project.
2. In the dialog, select the WPF Application option from Templates | Visual

C#, as shown in the following screenshot:

Getting Started with Azure Cognitive Services

[4]

3. Delete the MainWindow.xaml file and create the files and folders that are
shown in the following screenshot:

We will not go through the MVVM pattern in detail, as this is out of the scope of this
book. The key takeaway from the screenshot is that we have separated the View from
what becomes the logic. We then rely on the ViewModel to connect the pieces.

If you want to learn more about MVVM, I recommend reading http://
www.codeproject.com/Articles/100175/Model-View-
ViewModel-MVVM-Explained.

To be able to run this, however, we do need to set up our project. Go through the
following steps:

1. Open the App.xaml file and make sure the StartupUri is set to the correct
View, as shown in the following code (class name and namespace may vary
based on the name of your application):
 <Application x:Class="Chapter1.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
 xmlns:x = "http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:Chapter1"

 StartupUri="View/MainView.xaml">

2. Open the MainViewModel.cs file and make it inherit from the
ObservableObject class.

http://www.codeproject.com/Articles/100175/Model-View-ViewModel-MVVM-Explained
http://www.codeproject.com/Articles/100175/Model-View-ViewModel-MVVM-Explained
http://www.codeproject.com/Articles/100175/Model-View-ViewModel-MVVM-Explained

Chapter 1

[5]

3. Open the MainView.xaml file and add the MainViewModel file as
DataContext to it, as shown in the following code (namespace and class
names may vary based on the name of your application):

 <Window x:Class="Chapter1.View.MainView"

 xmlns="http://schemas.microsoft.com/
winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/
expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
 xmlns:local="clr-namespace:Chapter1.View"
 xmlns:viewmodel="clr-namespace:Chapter1.ViewModel"
mc:Ignorable="d"
 Title="Chapter 1" Height="300" Width="300">
 <Window.DataContext>
 <viewmodel:MainViewModel />
 </Window.DataContext>

Following this, we need to fill in the content of the ObservableObject.cs file. We
start off by having it inherit from the INotifyPropertyChanged class as follows:

 public class ObservableObject : INotifyPropertyChanged

This is a rather small class, which should contain the following:

 public event PropertyChangedEventHandlerPropertyChanged;
 protected void RaisePropertyChangedEvent(string propertyName)
 {
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs
(propertyName));
 }

We declare a property changed event and create a function to raise the event.
This will allow the user interface (UI) to update its values when a given
property has changed.

We also need to be able to execute actions when buttons are clicked. This can be
achieved when we put some content into the DelegateCommand.cs file. Start by
making the class inherit the ICommand class, and declare the following two variables:

 public class DelegateCommand : ICommand
 {
 private readonly Predicate<object> _canExecute;
 private readonly Action<object> _execute;

Getting Started with Azure Cognitive Services

[6]

The two variables we have created will be set in the constructor. As you will notice,
you are not required to add the _canExecute parameter, and you will see why
in a bit:

 public DelegateCommand(Action<object> execute,
Predicate<object> canExecute = null)
 {
 _execute = execute;
 _canExecute = canExecute;
 }

To complete the class, we add two public functions and one public event,
as follows:

 public bool CanExecute(object parameter)
 {
 if (_canExecute == null) return true;
 return _canExecute(parameter);
 }

 public void Execute(object parameter)
 {
 _execute(parameter);
 }

 public event EventHandlerCanExecuteChanged
 {
 add
 {
 CommandManager.RequerySuggested += value;
 }
 remove
 {
 CommandManager.RequerySuggested -= value;
 }
 }
 }

The functions declared will return the corresponding predicate, or action, declared
in the constructor. This will be something we declare in our ViewModel instances,
which, in turn, will be something that executes an action or tells the application that
it can or cannot execute an action. If a button is in a state where it is disabled (that
is, when the CanExecute function returns false) and the state of the CanExecute
function changes, the event that is declared will let the button know.

Chapter 1

[7]

With that in place, you should be able to compile and run the application, so go on
and try that. You will notice that the application does not actually do anything or
present any data yet, but we have an excellent starting point.

Before we do anything else with the code, we are going to export the project as a
template using the following steps. This is so that we do not have to redo all these
steps for each small sample project we create:

1. Replace the namespace names with substitute parameters:
2. 1. In all the .cs files, replace the namespace name with $safeprojectname$
3. In all the .xaml files, replace the project name with $safeprojectname$

where applicable (typically the class name and namespace declarations)
4. Navigate to File | Export Template. This will open the Export Template

wizard, as shown in the following screenshot:

5. Click on the Project Template button. Select the project we just created and
click on the Next button.

Getting Started with Azure Cognitive Services

[8]

6. Just leave the icon and preview image empty. Enter a recognizable name and
description. Click on the Finish button:

7. The template is now exported to a .zip file and stored in the
specified location.

By default, the template will be imported into Visual Studio again. We are going to
test that it works immediately by creating a project for this chapter. So go ahead and
create a new project, selecting the template that we just created. The template should
be listed in the Visual C# section of the installed templates list. Call the project
Chapter1, or something else, if you prefer. Make sure it compiles and that you are
able to run it before we move to the next step.

Chapter 1

[9]

Detecting faces with the Face API
With the newly created project, we will now try our first API, the Face API.
We will not be doing a whole lot, but we will still see how simple it is to detect
faces in images.

The steps we need to go through in order to do this are as follows:

1. Register for a Face API preview subscription at Microsoft Azure
2. Add the necessary NuGet packages to our project
3. Add a UI to the application
4. Detect faces on command

Head over to https://portal.azure.com to start the process of registering for a
free subscription to the Face API. You will be taken to a login page. Log on with
your Microsoft account; if you do not have one, then register for one.

Once logged in, you will need to add a new resource by clicking on + New on the
right-hand menu. Search for Face API and select the first entry, as shown in the
following screenshot:

https://portal.azure.com/
https://portal.azure.com/

Getting Started with Azure Cognitive Services

[10]

Enter a name and select the subscription, location, and pricing tier. At the time
of writing, there are two pricing options, one free and one paid, as shown in the
following screenshot:

Once created, you can go into the newly created resource. You will need one of
the two available API keys. These can be found in the Keys option of the Resource
Management menu, as shown in the following screenshot:

Chapter 1

[11]

Some of the APIs that we will cover have their own NuGet packages created.
Whenever this is the case, we will utilize those packages to do the operations we
want to perform. A common feature of all APIs is that they are REST APIs, which
means that in practice you can use them with whichever language you want. For
those APIs that do not have their own NuGet package, we call the APIs directly
through HTTP.

A NuGet package does exist for the Face API we are using now, so we need to add
that to our project. Head over to the NuGet Package Manager option for the project
we created earlier. In the Browse tab, search for the Microsoft.ProjectOxford.
Face package and install the package from Microsoft, as shown in the following
screenshot:

Getting Started with Azure Cognitive Services

[12]

As you will notice, another package will also be installed. This is the Newtonsoft.
Json package, which is required by the Face API.

The next step is to add a UI to our application. We will be adding this in the
MainView.xaml file. Open this file where the template code that we created earlier
should be. This means that we have DataContext, and can make bindings for our
elements, which we will define now.

First, we add a grid and define some rows for the grid, as follows:

 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="20" />
 <RowDefinition Height="30" />
 </Grid.RowDefinitions>

Three rows are defined. The first is a row where we will have an image, the second is
a line for the status message, and the last is where we will place some buttons.

Next, we add our image element, as follows:

 <Image x:Name="FaceImage" Stretch="Uniform" Source=

 "{Binding ImageSource}" Grid.Row="0" />

We have given it a unique name. By setting the Stretch parameter to Uniform, we
ensure that the image keeps its aspect ratio. Further on, we place this element in the
first row. Last, we bind the image source to a BitmapImage in the ViewModel, which
we will look at in a bit.

The next row will contain a text block with some status text. The Text property will
be bound to a string property in the ViewModel, as follows:

 <TextBlockx:Name="StatusTextBlock" Text=

 "{Binding StatusText}" Grid.Row="1" />

The last row will contain one button to browse for an image and one button to be
able to detect faces. The command properties of both buttons will be bound to the
DelegateCommand properties in the ViewModel, as follows:

 <Button x:Name = "BrowseButton"
 Content = "Browse" Height="20" Width="140"
 HorizontalAlignment = "Left"
 Command="{Binding BrowseButtonCommand}"
 Margin="5, 0, 0, 5"Grid.Row="2" />

Chapter 1

[13]

 <Button x:Name="DetectFaceButton"
 Content="Detect face" Height="20" Width="140"
 HorizontalAlignment="Right"
 Command="{Binding DetectFaceCommand}"
 Margin="0, 0, 5, 5"Grid.Row="2"/>

With the View in place, make sure that the code compiles and runs it. This should
present you with the following UI:

The last part of the process is to create the binding properties in our ViewModel
and make the buttons execute something. Open the MainViewModel.cs file. The
class should already inherit from the ObservableObject class. First, we define two
variables as follows:

 private string _filePath;
 private IFaceServiceClient _faceServiceClient;

The string variable will hold the path to our image, while the IFaceServiceClient
variable is to interface the Face API. Next, we define two properties, as follows:

 private BitmapImage _imageSource;
 public BitmapImageImageSource
 {
 get { return _imageSource; }
 set
 {
 _imageSource = value;

Getting Started with Azure Cognitive Services

[14]

 RaisePropertyChangedEvent("ImageSource");
 }
 }

 private string _statusText;
 public string StatusText
 {
 get { return _statusText; }
 set
 {
 _statusText = value;
 RaisePropertyChangedEvent("StatusText");
 }
 }

What we have here is a property for the BitmapImage, mapped to the Image element
in the View. We also have a string property for the status text, mapped to the text
block element in the View. As you may also notice, when either of the properties is
set, we call the RaisePropertyChangedEvent event. This will ensure that the UI
updates when either property has new values.

Next, we define our two DelegateCommand objects and perform some initialization
through the constructor, as follows:

 public ICommandBrowseButtonCommand { get; private set; }
 public ICommandDetectFaceCommand { get; private set; }

 public MainViewModel()
 {
 StatusText = "Status: Waiting for image...";

 _faceServiceClient = new FaceServiceClient("YOUR_API_KEY_
HERE", "ROOT_URI);

 BrowseButtonCommand = new DelegateCommand(Browse);
 DetectFaceCommand = new DelegateCommand(DetectFace,
CanDetectFace);
 }

The properties for the commands are public to get, but private to set. This means
that we can only set them from within the ViewModel. In our constructor, we start off
by setting the status text. Next, we create an object of the Face API, which needs to be
created with the API key we got earlier. In addition, it needs to specify the root URI,
pointing at the location of the service. It can, for instance, be https://westeurope.
api.cognitive.microsoft.com/face/v1.0 if the service is located in west Europe.

https://westeurope.api.cognitive.microsoft.com/face/v1.0
https://westeurope.api.cognitive.microsoft.com/face/v1.0

Chapter 1

[15]

If the service is located in the west US, you would replace westeurope with westus.
The root URI can be found in the following place in Azure Portal:

At last, we create the DelegateCommand constructor for our command properties.
Note how the browse command does not specify a predicate. This means that it
will always be possible to click on the corresponding button. To make this compile,
we need to create the functions specified in the DelegateCommand constructors: the
Browse, DetectFace, and CanDetectFace functions.

We start the Browse function by creating an OpenFileDialog object. This dialog is
assigned a filter for JPEG images, and, in turn, it is opened, as shown in the following
code. When the dialog is closed, we check the result. If the dialog was canceled, we
simply stop further execution:

 private void Browse(object obj)
 {
 var openDialog = new Microsoft.Win32.OpenFileDialog();
 openDialog.Filter = "JPEG Image(*.jpg)|*.jpg";
 bool? result = openDialog.ShowDialog();

 if (!(bool)result) return;

With the dialog closed, we grab the filename of the file selected and create a new URI
from it, as shown in the following code:

 _filePath = openDialog.FileName;
 Uri fileUri = new Uri(_filePath);

With the newly created URI, we want to create a new BitmapImage. We specify it so
that it uses no cache, and we set the URI source of the URI that we created, as shown
in the following code:

 BitmapImage image = new BitmapImage(fileUri);

 image.CacheOption = BitmapCacheOption.None;
 image.UriSource = fileUri;

Getting Started with Azure Cognitive Services

[16]

The last step we take is to assign the bitmap image to our BitmapImage property so
that the image is shown in the UI. We also update the status text to let the user know
that the image has been loaded, as shown in the following code:

 ImageSource = image;
 StatusText = "Status: Image loaded...";
 }

The CanDetectFace function checks whether or not the DetectFacesButton button
should be enabled. In this case, it checks whether our image property actually has a
URI. If it does by extension, then that means that we have an image and we should
be able to detect faces, as shown in the following code:

 private boolCanDetectFace(object obj)
 {
 return !string.IsNullOrEmpty(ImageSource?.UriSource.
ToString());
 }

Our DetectFace method calls an async method to upload and detect faces. The
return value contains an array of the FaceRectangles variable. This array contains
the rectangle area for all face positions in the given image. We will look into the
function that we are going to call in a bit.

After the call has finished executing, we print a line containing the number of faces
to the debug console window, as follows:

 private async void DetectFace(object obj)
 {
 FaceRectangle[] faceRects = await UploadAndDetectFacesAsync();

 string textToSpeak = "No faces detected";

 if (faceRects.Length == 1)
 textToSpeak = "1 face detected";
 else if (faceRects.Length> 1)
 textToSpeak = $"{faceRects.Length} faces detected";

 Debug.WriteLine(textToSpeak);
 }

Chapter 1

[17]

In the UploadAndDetectFacesAsync function, we create a Stream from the image, as
shown in the following code. This stream will be used as input for the actual call to
the Face API service:

 private async Task<FaceRectangle[]>UploadAndDetectFacesAsync()
 {
 StatusText = "Status: Detecting faces...";

 try
 {
 using (Stream imageFileStream = File.OpenRead(_filePath))

The following line is the actual call to the detection endpoint for the Face API:

 Face[] faces = await _faceServiceClient.
DetectAsync(imageFileStream, true, true, new List<FaceAttributeType>()
{ FaceAttributeType.Age });

The first parameter is the file stream that we created in the previous step. The rest
of the parameters are all optional. The second parameter should be true if you
want to get a face ID. The next parameter specifies whether you want to receive face
landmarks or not. The last parameter takes a list of facial attributes that you may
want to receive. In our case, we want the age parameter to be returned, so we need
to specify that.

The return type of this function call is an array of faces, with all the parameters that
you have specified, as shown in the following code:

 List<double> ages = faces.Select(face =>face.
FaceAttributes.Age).ToList();
 FaceRectangle[] faceRects = faces.Select(face =>face.
FaceRectangle).ToArray();

 StatusText = "Status: Finished detecting faces...";

 foreach(var age in ages) {
 Console.WriteLine(age);
 }
 return faceRects;
 }
 }

Getting Started with Azure Cognitive Services

[18]

The first line iterates over all faces and retrieves the approximate age of all faces.
This is later printed to the debug console window, in the foreach loop.

The second line iterates over all faces and retrieves the face rectangle, with the
rectangular location of all faces. This is the data that we return to the calling function.

Add a catch clause to finish the method. Where an exception is thrown in our
API call, we catch that. We want to show the error message and return an empty
FaceRectangle array.

With that code in place, you should now be able to run the full example. The end
result will look like the following screenshot:

The result debug console window will print the following text:

 1 face detected

 23,7

Chapter 1

[19]

An overview of different APIs
Now that you have seen a basic example of how to detect faces, it is time to learn
a bit about what else Cognitive Services can do for you. When using Cognitive
Services, you have 21 different APIs to hand. These are, in turn, separated into
five top-level domains depending on what they do. These domains are vision,
speech, language, knowledge, and search. We will learn more about them in the
following sections.

Vision
APIs under the vision flags allow your apps to understand images and video
content. They allow you to retrieve information about faces, feelings, and other
visual content. You can stabilize videos and recognize celebrities. You can read
text in images and generate thumbnails from videos and images.

There are four APIs contained in the vision domain, which we will look at now.

Computer vision
Using the computer vision API, you can retrieve actionable information from
images. This means that you can identify content (such as image format, image size,
colors, faces, and more). You can detect whether or not an image is adult/racy. This
API can recognize text in images and extract it to machine-readable words. It can
detect celebrities from a variety of areas. Lastly, it can generate storage-efficient
thumbnails with smart-cropping functionality.

We will look into computer vision in Chapter 2, Analyzing Images to Recognize a Face.

Face
We have already seen a very basic example of what the Face API can do. The rest of
the API revolves around the detection, identification, organization, and tagging of
faces in photos. As well as face detection, you can also see how likely it is that two
faces belong to the same person. You can identify faces and also find similar-looking
faces. We can also use the API to recognize emotions in images.

We will dive further into the Face API in Chapter 2, Analyzing Images to Recognize
a Face.

Getting Started with Azure Cognitive Services

[20]

Video indexer
Using the video indexer API, you can start indexing videos immediately upon
upload. This means that you can get video insights without using experts or
custom code. Content discovery can be improved, utilizing the powerful artificial
intelligence of this API. This allows you to make your content more discoverable.

The video indexer API will be covered in greater detail in Chapter 3, Analyzing Videos.

Content moderator
The content moderator API utilizes machine learning to automatically moderate
content. It can detect potentially offensive and unwanted images, videos, and text for
over 100 languages. In addition, it allows you to review detected material to improve
the service.

The content moderator will be covered in Chapter 2, Analyzing Images to Recognize
a Face.

Custom vision service
The custom vision service allows you to upload your own labeled images to a vision
service. This means that you can add images that are specific to your domain to
allow recognition using the computer vision API.

The custom vision service will be covered in more detail in Chapter 2, Analyzing
Images to Recognize a Face.

Speech
Adding one of the Speech APIs allows your application to hear and speak to your
users. The APIs can filter noise and identify speakers. Based on the recognized intent,
they can drive further actions in your application.

The speech domain contains three APIs that are outlined in the following sections.

Bing Speech
Adding the Bing Speech API to your application allows you to convert speech
to text and vice versa. You can convert spoken audio to text either by utilizing
a microphone or other sources in real time or by converting audio from files.
The API also offers speech intent recognition, which is trained by the Language
Understanding Intelligent Service (LUIS) to understand the intent.

Chapter 1

[21]

Speaker recognition
The speaker recognition API gives your application the ability to know who is
talking. By using this API, you can verify that the person that is speaking is who they
claim to be. You can also determine who an unknown speaker is based on a group of
selected speakers.

Translator speech API
The translator speech API is a cloud-based automatic translation service for spoken
audio. Using this API, you can add end-to-end translation across web apps, mobile
apps, and desktop applications. Depending on your use cases, it can provide you
with partial translations, full translations, and transcripts of the translations.

We will cover all speech-related APIs in Chapter 5, Speak with Your Application.

Language
APIs that are related to the language domain allow your application to process
natural language and learn how to recognize what users want. You can add
textual and linguistic analysis to your application, as well as natural language
understanding.

The following five APIs can be found in the language domain.

Bing Spell Check
The Bing Spell Check API allows you to add advanced spell checking to
your application.

This API will be covered in Chapter 6, Understanding Text.

Language Understanding Intelligent Service (LUIS)
LUIS is an API that can help your application understand commands from your
users. Using this API, you can create language models that understand intents.
By using models from Bing and Cortana, you can make these models recognize
common requests and entities (such as places, times, and numbers). You can add
conversational intelligence to your applications.

LUIS will be covered in Chapter 4, Let Applications Understand Commands.

Getting Started with Azure Cognitive Services

[22]

Text analytics
The text analytics API will help you in extracting information from text. You can
use it to find the sentiment of a text (whether the text is positive or negative), and
will also be able to detect the language, topic, key phrases, and entities that are used
throughout the text.

We will also cover the text analysis API in Chapter 6, Understanding Text.

Translator Text API
By adding the translator text API, you can get textual translations for over 60
languages. It can detect languages automatically, and you can customize the API
to your needs. In addition, you can improve translations by creating user groups,
utilizing the power of crowdsourcing.

The translator text API will not be covered in this book.

Knowledge
When we talk about knowledge APIs, we are talking about APIs that allow you to
tap into rich knowledge. This may be knowledge from the web or from academia, or
it may be your own data. Using these APIs, you will be able to explore the different
nuances of knowledge.

The following four APIs are contained in the knowledge API domain.

Project Academic Knowledge
Using the Project Academic Knowledge API, you can explore relationships
among academic papers, journals, and authors. This API allows you to interpret
natural language user query strings, which allows your application to anticipate
what the user is typing. It will evaluate what is being typed and return academic
knowledge entities.

This API will be covered in more detail in Chapter 8, Query Structured Data in
a Natural Way.

Knowledge exploration
The knowledge exploration API will let you add the possibility of using interactive
searches for structured data in your projects. It interprets natural language queries
and offers autocompletions to minimize user effort. Based on the query expression
received, it will retrieve detailed information about matching objects.

Chapter 1

[23]

Details on this API will be covered in Chapter 8, Query Structured Data in a
Natural Way.

Recommendations solution
The recommendations solution API allows you to provide personalized product
recommendations for your customers. You can use this API to add a frequently-
bought-together functionality to your application. Another feature that you can
add is item-to-item recommendations, which allows customers to see what other
customers like. This API will also allow you to add recommendations based on the
prior activity of the customer.

We will go through this API in Chapter 7, Building Recommendation Systems
for Businesses.

QnA Maker
The QnA Maker is a service to distill information for frequently asked questions
(FAQ). Using existing FAQs, either online or in a document, you can create question
and answer pairs. Pairs can be edited, removed, and modified, and you can add
several similar questions to match a given pair.

We will cover QnA Maker in Chapter 8, Query Structured Data in a Natural Way.

Project Custom Decision Service
Project Custom Decision Service is a service designed to use reinforced learning to
personalize content. The service understands any context and can provide context-
based content.

This book does not cover Project Custom Decision Service.

Search
Search APIs give you the ability to make your applications more intelligent with the
power of Bing. Using these APIs, you can use a single call to access data from billions
of web pages, images, videos, and news articles.

The search domain contains the following APIs.

Getting Started with Azure Cognitive Services

[24]

Bing Web Search
With Bing Web Search, you can search for details in billions of web documents
that are indexed by Bing. All the results can be arranged and ordered according to
a layout that you specify, and the results are customized to the location of the end
user.

Bing Web Search will be covered in Chapter 9, Adding Specialized Search.

Bing Image Search
Using the Bing Image Search API, you can add an advanced image and metadata
search to your application. Results include URLs to images, thumbnails, and
metadata. You will also be able to get machine-generated captions, similar images,
and more. This API allows you to filter the results based on image type, layout,
freshness (how new the image is), and license. Bing Image Search will be covered in
Chapter 9, Adding Specialized Search.

Bing Video Search
Bing Video Search will allow you to search for videos and return rich results. The
results could contain metadata from the videos, static or motion-based thumbnails,
and the video itself. You can add filters to the results based on freshness, video
length, resolution, and price.

Bing Video Search will be covered in Chapter 9, Adding Specialized Search.

Bing News Search
If you add Bing News Search to your application, you can search for news articles.
Results can include authoritative images, related news and categories, information
on the provider, URLs, and more. To be more specific, you can filter news based
on topics.

Bing News Search will be covered in Chapter 9, Adding Specialized Search.

Bing Autosuggest
The Bing Autosuggest API is a small but powerful one. It will allow your users to
search faster using their search suggestions, allowing you to connect a powerful
search functionality to your apps.

Bing Autosuggest will be covered in Chapter 9, Adding Specialized Search.

Chapter 1

[25]

Bing Visual Search
Using the Bing Visual Search API, you can identify and classify images. You can
also acquire knowledge about images.

Bing Visual Search will be covered in Chapter 9, Adding Specialized Search.

Bing Custom Search
By utilizing the Bing Custom Search API, you can create a powerful, customized
search that fits your needs. This tool is an ad-free commercial tool that allows you to
deliver the search results you want.

Bing Custom Search will be covered in Chapter 9, Adding Specialized Search.

Bing Entity Search
Using the Bing Entity Search API, you can enhance your searches. The API will
find the most relevant entity based on your search terms. It will find entities such as
famous people, places, movies, and more.

We will not cover Bing Entity Search in this book.

Getting feedback on detected faces
Now that we have seen what else Azure Cognitive Services can offer, we are going
to add an API to our face detection application. In this section, we will add the Bing
Speech API to make the application say the number of faces out loud.

This feature of the API is not provided in the NuGet package, and as such, we are
going to use the REST API.

To reach our end goal, we are going to add two new classes, TextToSpeak and
Authentication. The first class will be in charge of generating the correct headers
and making the calls to our service endpoint. The latter class will be in charge of
generating an authentication token. This will be tied together in our ViewModel,
where we will make the application speak back to us.

We need to get our hands on an API key first. Head over to the Microsoft Azure
Portal. Create a new service for Bing Speech.

To be able to call the Bing Speech API, we need to have an authorization token. Go
back to Visual Studio and create a new file called Authentication.cs. Place this in
the Model folder.

Getting Started with Azure Cognitive Services

[26]

We need to add two new references to the project. Find the System.Runtime.
Serialization and System.Web packages in the Assembly tab in the Add
References window and add them.

In our Authentication class, define four private variables and one public
property, as follows:

 private string _requestDetails;
 private string _token;
 private Timer _tokenRenewer;

 private const int TokenRefreshInterval = 9;

 public string Token { get { return _token; } }

The constructor should accept one string parameter, clientSecret.
The clientSecret parameter is the API key you signed up for.

In the constructor, assign the _clientSecret variable, as follows:

 _clientSecret = clientSecret;

Create a new function called Initialize, as follows:

 public async Task Initialize()
 {
 _token = GetToken();

 _tokenRenewer = new Timer(new TimerCallback(OnTokenExpiredCal
lback), this,
 TimeSpan.FromMinutes(TokenRefreshInterval),
 TimeSpan.FromMilliseconds(-1));

 }

We then fetch the access token in a method that we will create shortly.

Finally, we create our timer class, which will call the callback function in nine
minutes. The callback function will need to fetch the access token again and assign
it to the _token variable. It also needs to ensure that we run the timer again in
nine minutes.

Next, we need to create the GetToken method. This method should return a
Task<string>object, and it should be declared as private and marked as async.

Chapter 1

[27]

In the method, we start by creating an HttpClient object, pointing to an endpoint
that will generate our token. We specify the root endpoint and add the token issue
path, as follows:

 using(var client = new HttpClient())

 {

 client.DefaultRequestHeaders.Add ("Opc-Apim-Subscription-Key",
_clientSecret);

 UriBuilder uriBuilder = new UriBuilder (https://api.cognitive.
microsoft.com/sts/v1.0");

 uriBuilder.Path = "/issueToken";

We then go on to make a POST call to generate a token, as follows:

var result = await client.PostAsync(uriBuilder.Uri.AbsoluteUri, null);

When the request has been sent, we expect there to be a response. We want to read
this response and return the response string:

return await result.Content.ReadAsStringAsync();

Add a new file called TextToSpeak.cs, if you have not already done so. Put this file
in the Model folder.

Beneath the newly created class (but inside the namespace), we want to add two
event argument classes. These will be used to handle audio events, which we will
see later.

The AudioEventArgs class simply takes a generic stream, as shown in the following
code. You can imagine it being used to send the audio stream to our application:

 public class AudioEventArgs : EventArgs
 {
 public AudioEventArgs(Stream eventData)
 {
 EventData = eventData;
 }

 public StreamEventData { get; private set; }
 }

Getting Started with Azure Cognitive Services

[28]

The next class allows us to send an event with a specific error message:

 public class AudioErrorEventArgs : EventArgs
 {
 public AudioErrorEventArgs(string message)
 {
 ErrorMessage = message;
 }

 public string ErrorMessage { get; private set; }
 }

We move on to start on the TextToSpeak class, where we start off by declaring some
events and class members, as follows:

 public class TextToSpeak
 {
 public event EventHandler<AudioEventArgs>OnAudioAvailable;
 public event EventHandler<AudioErrorEventArgs>OnError;

 private string _gender;
 private string _voiceName;
 private string _outputFormat;
 private string _authorizationToken;
 private AccessTokenInfo _token;

 private List<KeyValuePair<string, string>> _headers = new
List<KeyValuePair<string, string>>();

The first two lines in the class are events that use the event argument classes that we
created earlier. These events will be triggered if a call to the API finishes (returning
some audio), or if anything fails. The next few lines are string variables, which
we will use as input parameters. We have one line to contain our access token
information. The last line creates a new list, which we will use to hold our request
headers.

We add two constant strings to our class, as follows:

private const string RequestUri = "https://speech.platform.bing.com/
synthesize";

private const string SsmlTemplate =
 "<speak version='1.0'xml:lang='en-US'>
 <voice xml:lang='en-US'xml:gender='{0}'
 name='{1}'>{2}
 </voice>
 </speak>";

Chapter 1

[29]

The first string contains the request URI. That is the REST API endpoint that we need
to call to execute our request. Next, we have a string defining our Speech Synthesis
Markup Language (SSML) template. This is where we will specify what the speech
service should say, and how it should say it.

Next, we create our constructor, as follows:

 public TextToSpeak()
 {
 _gender = "Female";
 _outputFormat = "riff-16khz-16bit-mono-pcm";
 _voiceName = "Microsoft Server Speech Text to Speech Voice
(en-US, ZiraRUS)";
 }

Here, we are just initializing some of the variables that we declared earlier. As you
may see, we are defining the voice as female and we define it so that it uses a specific
voice. In terms of gender, it can be either female or male. The voice name can be one
of a long list of options. We will look more into the details of that list when we go
through this API in a later chapter.

The last line specifies the output format of the audio. This will define the format and
codec in use by the resultant audio stream. Again, this can be a number of varieties,
which we will look into in a later chapter.

Following the constructor, there are three public methods that we will create.
These will generate an authentication token and some HTTP headers, and finally
execute our call to the API. Before we create these, you should add two helper
methods to be able to raise our events. Call them the RaiseOnAudioAvailable
and RaiseOnError methods. They should accept AudioEventArgs and
AudioErrorEventArgs as parameters.

Next, add a new method called the GenerateHeaders method, as follows:

 public void GenerateHeaders()
 {
 _headers.Add(new KeyValuePair<string, string>("Content-
Type", "application/ssml+xml"));
 _headers.Add(new KeyValuePair<string, string>("X-
Microsoft-OutputFormat", _outputFormat));
 _headers.Add(new KeyValuePair<string,
string>("Authorization", _authorizationToken));
 _headers.Add(new KeyValuePair<string, string>("X-Search-
AppId", Guid.NewGuid().ToString("N")));

Getting Started with Azure Cognitive Services

[30]

 _headers.Add(new KeyValuePair<string, string>("X-Search-
ClientID", Guid.NewGuid().ToString("N")));
 _headers.Add(new KeyValuePair<string, string>("User-
Agent", "Chapter1"));
 }

Here, we add the HTTP headers to our previously created list. These headers are
required for the service to respond, and if any are missing, it will yield an HTTP/400
response. We will cover what we are using as headers in more detail later. For now,
just make sure that they are present.

Following this, we want to add a new method called
GenerateAuthenticationToken, as follows:

 public bool GenerateAuthenticationToken(string clientSecret)
 {
 Authentication auth = new Authentication(clientSecret);

This method accepts one string parameter, the client secret (your API key). First,
we create a new object of the Authentication class, which we looked at earlier,
as follows:

 try
 {
 _token = auth.Token;

 if (_token != null)
 {
 _authorizationToken = $"Bearer {_token}";

 return true;
 }
 else
 {
 RaiseOnError(new AudioErrorEventArgs("Failed to
generate authentication token."));
 return false;
 }
 }

We use the authentication object to retrieve an access token. This token is used in
our authorization token string, which, as we saw earlier, is being passed on in our
headers. If the application for some reason fails to generate the access token, we
trigger an error event.

Chapter 1

[31]

Finish this method by adding the associated catch clause. If any exceptions occur,
we want to raise a new error event.

The last method that we need to create in this class is going to be called the
SpeakAsync method, as shown in the following screenshot. This method will
actually perform the request to the Speech API:

 public Task SpeakAsync(string textToSpeak,
CancellationTokencancellationToken)
 {
 varcookieContainer = new CookieContainer();
 var handler = new HttpClientHandler() {
 CookieContainer = cookieContainer
 };
 var client = new HttpClient(handler);

The method takes two parameters. One is the string, which will be the text that we
want to be spoken. The next is cancellationToken; this can be used to propagate
the command that the given operation should be cancelled.

When entering the method, we create three objects that we will use to execute the
request. These are classes from the .NET library. We will not be going through them
in any more detail.

We generated some headers earlier, and we need to add these to our HTTP client.
We do this by adding the headers in the preceding foreach loop, basically looping
through the entire list, as shown in the following code:

 foreach(var header in _headers)
 {
 client.DefaultRequestHeaders.TryAddWithoutValidation
(header.Key, header.Value);
 }

Next, we create an HTTP Request Message, specifying the request URI and the fact
that we will send data through the POST method. We also specify the content using
the SSML template that we created earlier, adding the correct parameters (gender,
voice name, and the text we want to be spoken), as shown in the following code:

 var request = new HttpRequestMessage(HttpMethod.Post,
RequestUri)
 {
 Content = new StringContent(string.
Format(SsmlTemplate, _gender, _voiceName, textToSpeak))
 };

Getting Started with Azure Cognitive Services

[32]

We use the HTTP client to send the HTTP request asynchronously, as follows:

 var httpTask = client.SendAsync(request,
HttpCompletionOption.ResponseHeadersRead, cancellationToken);

The following code is a continuation of the asynchronous send call that we made
previously. This will run asynchronously as well, and check the status of the
response. If the response is successful, it will read the response message as a stream
and trigger the audio event. If everything succeeds, then that stream should contain
our text in spoken words:

 var saveTask = httpTask.ContinueWith(async (responseMessage,
token) =>
 {
 try
 {
 if (responseMessage.IsCompleted &&
 responseMessage.Result != null &&
 responseMessage.Result.IsSuccessStatusCode) {
 var httpStream = await responseMessage. Result.
Content.ReadAsStreamAsync().ConfigureAwait(false);
 RaiseOnAudioAvailable(new AudioEventArgs
(httpStream));
 } else {
 RaiseOnError(new AudioErrorEventArgs($"Service
returned {responseMessage.Result.StatusCode}"));
 }
 }
 catch(Exception e)
 {
 RaiseOnError(new AudioErrorEventArgs
(e.GetBaseException().Message));
 }
 }

If the response indicates anything other than success, we will raise the error event.

We also want to add a catch clause and a finally clause to this. Raise an error if an
exception is caught and dispose of all objects used in the finally clause.

The final code we need specifies that the continuation task is attached to the parent
task. We also need to add cancellationToken to this task. Add the following code
to finish off the method:

 }, TaskContinuationOptions.AttachedToParent, cancellationToken);
 return saveTask;
}

Chapter 1

[33]

With this in place, we are now able to utilize this class in our application. Open the
MainViewModel.cs file and declare a new class variable, as follows:

 private TextToSpeak _textToSpeak;

Add the following code in the constructor to initialize the newly added object. We
also need to call a function to generate the authentication token, as follows:

 _textToSpeak = new TextToSpeak();
 _textToSpeak.OnAudioAvailable += _textToSpeak_
OnAudioAvailable;
 _textToSpeak.OnError += _textToSpeak_OnError;

 GenerateToken();

After we have created the object, we hook up the two events to event handlers. Then
we generate an authentication token by creating a GenerateToken function with the
following content:

public async void GenerateToken()

{

 if (await _textToSpeak.GenerateAuthenticationToken("BING_SPEECH_
API_KEY_HERE"))

 _textToSpeak.GenerateHeaders();

}

Then we generate an authentication token, specifying the API key for the Bing
Speech API. If that call succeeds, we generate the HTTP headers required.

We need to add the event handlers, so create the _textToSpeak_OnError method
first, as follows:

 private void _textToSpeak_OnError(object sender,
AudioErrorEventArgs e)
 {
 StatusText = $"Status: Audio service failed -
{e.ErrorMessage}";
 }

It should be a rather simple method, just outputting the error message to the user in
the status text field.

Getting Started with Azure Cognitive Services

[34]

Next, we need to create a _textToSpeak_OnAudioAvailable method, as follows:

 private void _textToSpeak_OnAudioAvailable(object sender,
AudioEventArgs e)
 {
 SoundPlayer player = new SoundPlayer(e.EventData);
 player.Play();
 e.EventData.Dispose();
 }

Here, we utilize the SoundPlayer class from the .NET framework. This allows us to
add the stream data directly and simply play the message.

The last part that we need for everything to work is to make the call to the
SpeakAsync method. We can make this by adding the following at the end
of our DetectFace method:

 await _textToSpeak.SpeakAsync(textToSpeak, CancellationToken.
None);

With that in place, you should now be able to compile and run the application.
By loading a photo and clicking on Detect face, you should be able to get the
number of faces in the image spoken back to you. Just remember to have your
audio turned on!

Summary
This chapter was a brief introduction to Azure Cognitive Services. We started off by
creating a template project to easily create new projects for the coming chapters. We
tried this template by creating an example project for this chapter. Then you learned
how to detect faces in images by utilizing the Face API. From there, we took a quick
tour of what Cognitive Services has to offer. We finished off by adding text-to-speech
capabilities to our application by using the Bing Speech API.

The next chapter will go into more detail of the vision part of the APIs. There, you
will learn how to analyze images using the computer vision API. You will go into
more detail about the Face API and will learn how to detect emotions in faces
by using the emotion API. We will use some of this to start building our
smart-house application.

[35]

Analyzing Images to
Recognize a Face

"We can use the Computer Vision API to prove to our clients the reliability of the
data, so they can be confident making important business decisions based on that
information."

- Leendert de Voogd, CEO of Vigiglobe

In the previous chapter, you were briefly introduced to Azure Cognitive Services.
Throughout this chapter, we will dive into image-based APIs from the vision API.
We will learn how to perform image analysis. Moving on, we will dive deeper
into the Face API, which we briefly looked at in the previous chapter, and we will
learn how you can identify people. Next, we will learn how to use the Face API
to recognize emotions in faces. Finally, we will learn about the different ways to
moderate content.

In this chapter, we will cover the following topics:

• Analyzing images to identify content, metadata, and adult ratings.
• Recognizing celebrities in images and reading text in images.
• Diving into the Face API:

 ° Learning to find the likelihood of two faces belonging to the
same person

 ° Grouping faces based on visual similarities and searching
similar faces

 ° Identifying a person from a face
 ° Recognizing emotions

• Content moderation.

Analyzing Images to Recognize a Face

[36]

Analyze an image using the Computer
Vision API
The Computer Vision API allows us to process an image and retrieve information
about it. It relies on advanced algorithms to analyze the content of the image in
different ways, based on our needs.

Throughout this section, we will learn how to take advantage of this API. We
will look at the different ways to analyze an image through standalone examples.
Some of the features we will cover will also be incorporated into our end-to-end
application in a later chapter.

Calling any of the APIs will return one of the following response codes:

Code Description
200 Information of the extracted features in JSON format.

400
Typically, this means bad request. It may be an invalid image URL, an
image that is too small or too large, an invalid image format, or any other
errors to do with the request body.

415 Unsupported media type.

500 Possible errors may include a failure to process the image, image processing
timing out, or an internal server error.

Setting up a chapter example project
Before we go into the specifics of the API, we need to create an example project for
this chapter. This project will contain all of the examples, which will not be put into
the end-to-end application at this stage:

If you have not already done so, sign up for an API key for Computer
Vision by visiting https://portal.azure.com.

1. Create a new project in Visual Studio using the template we created in
Chapter 1, Getting Started with Azure Cognitive Services.

2. Right-click on the project and choose Manage NuGet Packages. Search
for the Microsoft.ProjectOxford.Vision package and install it into the
project, as shown in the following screenshot:

https://portal.azure.com

Chapter 2

[37]

3. Create the following UserControls files and add them into the
ViewModel folder:

 ° CelebrityView.xaml

 ° DescriptionView.xaml

 ° ImageAnalysisView.xaml

 ° OcrView.xaml

 ° ThumbnailView.xaml

4. Also, add the corresponding ViewModel instances from the following list into
the ViewModel folder:

 ° CelebrityViewModel.cs

 ° DescriptionViewModel.cs

 ° ImageAnalysisViewModel.cs

 ° OcrViewModel.cs

 ° ThumbnailViewModel.cs

Go through the newly created ViewModel instances and make sure that all classes
are public.

Analyzing Images to Recognize a Face

[38]

We will switch between the different views using a TabControl tag. Open the
MainView.xaml file and add the following in the precreated Grid tag:

 <TabControl x: Name = "tabControl"
 HorizontalAlignment = "Left"
 VerticalAlignment = "Top"
 Width = "810" Height = "520">
 <TabItem Header="Analysis" Width="100">
 <controls:ImageAnalysisView />
 </TabItem>
 <TabItem Header="Description" Width="100">
 <controls:DescriptionView />
 </TabItem>
 <TabItem Header="Celebs" Width="100">
 <controls:CelebrityView />
 </TabItem>
 <TabItem Header="OCR" Width="100">
 <controls:OcrView />
 </TabItem>
 <TabItem Header="Thumbnail" Width="100">
 <controls:ThumbnailView />
 </TabItem>
 </TabControl>

This will add a tab bar at the top of the application that will allow you to navigate
between the different views.

Next, we will add the properties and members required in our MainViewModel.cs
file.

The following is the variable used to access the Computer Vision API:

 private IVisionServiceClient _visionClient;

The following code declares a private variable holding the CelebrityViewModel
object. It also declares the public property that we use to access the ViewModel in
our View:

 private CelebrityViewModel _celebrityVm;
 public CelebrityViewModel CelebrityVm
 {

Chapter 2

[39]

 get { return _celebrityVm; }
 set
 {
 _celebrityVm = value;
 RaisePropertyChangedEvent("CelebrityVm");
 }
 }

Following the same pattern, add properties for the rest of the created ViewModel
instances.

With all the properties in place, create the ViewModel instances in our constructor
using the following code:

 public MainViewModel()
 {
 _visionClient = new VisionServiceClient("VISION_API_KEY_HERE",
"ROOT_URI");

 CelebrityVm = new CelebrityViewModel(_visionClient);
 DescriptionVm = new DescriptionViewModel(_visionClient);
 ImageAnalysisVm= new ImageAnalysisViewModel(_visionClient);
 OcrVm = new OcrViewModel(_visionClient);
 ThumbnailVm = new ThumbnailViewModel(_visionClient);
 }

Note how we first create the VisionServiceClient object with the API key that we
signed up for earlier and the root URI, as described in Chapter 1, Getting Started with
Azure Cognitive Services. This is then injected into all the ViewModel instances to be
used there.

Analyzing Images to Recognize a Face

[40]

This should now compile and present you with the application shown in the
following screenshot:

Generic image analysis
We start enabling generic image analysis by adding a UI to the ImageAnalysis.xaml
file. All the Computer Vision example UIs will be built in the same manner.

The UI should have two columns, as shown in the following code:

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

The first one will contain the image selection, while the second one will display
our results.

Chapter 2

[41]

In the left-hand column, we create a vertically oriented StackPanel label. To this, we
add a label and a ListBox label. The list box will display a list of visual features that
we can add to our analysis query. Note how we have a SelectionChanged event
hooked up in the ListBox label in the following code. This will be added behind the
code, and will be covered shortly:

 <StackPanel Orientation="Vertical"Grid.Column="0">

 <TextBlock Text="Visual Features:"
 FontWeight="Bold"
 FontSize="15"
 Margin="5, 5" Height="20" />

 <ListBox: Name = "VisualFeatures"
 ItemsSource = "{Binding ImageAnalysisVm.Features}"
 SelectionMode = "Multiple" Height="150" Margin="5, 0, 5, 0"
 SelectionChanged = "VisualFeatures_SelectionChanged" />

The list box will be able to select multiple items, and the items will be gathered in
the ViewModel.

In the same stack panel, we also add a button element and an image element.
These will allow us to browse for an image, show it, and analyze it. Both the Button
command and the image source are bound to the corresponding properties in the
ViewModel, as shown in the following code:

 <Button Content = "Browse and analyze"
 Command = "{Binding ImageAnalysisVm.
BrowseAndAnalyzeImageCommand}"
 Margin="5, 10, 5, 10" Height="20" Width="120"
 HorizontalAlignment="Right" />

 <Image Stretch = "Uniform"
 Source="{Binding ImageAnalysisVm.ImageSource}"
 Height="280" Width="395" />
 </StackPanel>

We also add another vertically oriented stack panel. This will be placed in the
right-hand column. It contains a title label, as well as a textbox, bound to the
analysis result in our ViewModel, as shown in the following code:

 <StackPanel Orientation= "Vertical"Grid.Column="1">
 <TextBlock Text="Analysis Results:"
 FontWeight = "Bold"

Analyzing Images to Recognize a Face

[42]

 FontSize="15" Margin="5, 5" Height="20" />
 <TextBox Text = "{Binding ImageAnalysisVm.AnalysisResult}"
 Margin="5, 0, 5, 5" Height="485" />
 </StackPanel>

Next, we want to add our SelectionChanged event handler to our code-behind.
Open the ImageAnalysisView.xaml.cs file and add the following:

 private void VisualFeatures_SelectionChanged(object sender,
SelectionChangedEventArgs e) {
 var vm = (MainViewModel) DataContext;
 vm.ImageAnalysisVm.SelectedFeatures.Clear();

The first line of the function will give us the current DataContext, which is the
MainViewModel class. We access the ImageAnalysisVm property, which is our
ViewModel, and clear the selected visual features list.

From there, we loop through the selected items from our list box. All items will be
added to the SelectedFeatures list in our ViewModel:

 foreach(VisualFeature feature in VisualFeatures.SelectedItems)
 {
 vm.ImageAnalysisVm.SelectedFeatures.Add(feature);
 }
 }

Open the ImageAnalysisViewModel.cs file. Make sure that the class inherits the
ObservableObject class.

Declare a private variable, as follows:

 private IVisionServiceClient _visionClient;

This will be used to access the Computer Vision API, and it is initialized through
the constructor.

Next, we declare a private variable and the corresponding property for our list of
visual features, as follows:

 private List<VisualFeature> _features=new List<VisualFeature>();
 public List<VisualFeature> Features {
 get { return _features; }
 set {
 _features = value;
 RaisePropertyChangedEvent("Features");
 }
 }

Chapter 2

[43]

In a similar manner, create a BitmapImage variable and property called
ImageSource. Create a list of VisualFeature types called SelectedFeatures
and a string called AnalysisResult.

We also need to declare the property for our button, as follows:

 public ICommandBrowseAndAnalyzeImageCommand {get; private set;}

With that in place, we create our constructor, as follows:

 public ImageAnalysisViewModel(IVisionServiceClientvisionClient) {
 _visionClient = visionClient;
 Initialize();
 }

The constructor takes one parameter, the IVisionServiceClient object, which we
have created in our MainViewModel file. It assigns that parameter to the variable that
we created earlier. Then we call an Initialize function, as follows:

 private void Initialize() {
 Features = Enum.GetValues(typeof(VisualFeature))
 .Cast<VisualFeature>().ToList();

 BrowseAndAnalyzeImageCommand = new DelegateCommand(BrowseAndA
nalyze);
 }

In the Initialize function, we fetch all the values from the VisualFeature variable
of the enum type. These values are added to the features list, which is displayed in the
UI. We also created our button, and now that we have done so, we need to create the
corresponding action, as follows:

 private async void BrowseAndAnalyze(object obj)
 {
 var openDialog = new Microsoft.Win32.OpenFileDialog();

 openDialog.Filter = "JPEG Image(*.jpg)|*.jpg";
 bool? result = openDialog.ShowDialog();

 if (!(bool)result) return;

 string filePath = openDialog.FileName;

 Uri fileUri = new Uri(filePath);
 BitmapImage image = new BitmapImage(fileUri);

Analyzing Images to Recognize a Face

[44]

 image.CacheOption = BitmapCacheOption.None;
 image.UriSource = fileUri;

 ImageSource = image;

The first lines of the preceding code are similar to what we did in Chapter 1,
Getting Started with Azure Cognitive Services. We open a file browser and get
the selected image.

With an image selected, we run an analyze on it, as follows:

 try {
 using (StreamfileStream = File.OpenRead(filePath)) {
 AnalysisResult analysisResult = await _visionClient.
AnalyzeImageAsync(fileStream, SelectedFeatures);

We call the AnalyzeImageAsync function of our _visionClient. This function has
four overloads, all of which are quite similar. In our case, we pass on the image as
a Stream type and the SelectedFeatures list, containing the VisualFeatures
variable to analyze.

The request parameters are as follows:

Parameter Description

Image
(required)

• Can be uploaded in the form of a raw image binary or URL.
• Can be JPEG, PNG, GIF, or BMP.
• File size must be less than 4 MB.
• Image dimensions must be at least 50 x 50 pixels.

Visual features
(optional)

A list indicating the visual feature types to return. It can include
categories, tags, descriptions, faces, image types, color, and whether
or not it is adult content.

Details
(optional) A list indicating what domain-specific details to return.

The response to this request is the AnalysisResult string.

Chapter 2

[45]

We then check to see if the result is null. If it is not, we call a function to parse it and
assign the result to our AnalysisResult string, as follows:

 if (analysisResult != null)
 AnalysisResult = PrintAnalysisResult(analysisResult);

Remember to close the try clause and finish the method with the corresponding
catch clause.

The AnalysisResult string contains data according to the visual features requested
in the API call.

Data in the AnalysisResult variable is described in the following table:

Visual
feature Description

Categories Images are categorized according to a defined taxonomy. This includes
everything from animals, buildings, and outdoors, to people.

Tags Images are tagged with a list of words related to the content.
Description This contains a full sentence describing the image.

Faces This detects faces in images and contains face coordinates, gender,
and age.

ImageType This detects whether an image is clipart or a line drawing.

Color This contains information about dominant colors, accent colors, and
whether or not the image is in black and white.

Adult This detects whether an image is pornographic in nature and whether or
not it is racy.

To retrieve data, for example for categories, you can use the following:

 if (analysisResult.Description != null) {
 result.AppendFormat("Description: {0}\n", analysisResult.
Description.Captions[0].Text);
 result.AppendFormat("Probability: {0}\n\n", analysisResult.
Description.Captions[0].Confidence);

 }

Analyzing Images to Recognize a Face

[46]

A successful call would present us with the following result:

Sometimes, you may only be interested in the image description. In such cases, it
is wasteful to ask for the kind of full analysis that we have just done. By calling the
following function, you will get an array of descriptions:

 AnalysisResultdescriptionResult = await _visionClient.
DescribeAsync(ImageUrl, NumberOfDescriptions);

In this call, we have specified a URL for the image and the number of descriptions to
return. The first parameter must always be included, but it may be an image upload
instead of a URL. The second parameter is optional, and in cases where it is not
provided, it defaults to one.

A successful query will result in an AnalysisResult object, which is the same as
the one that was described in the preceding code. In this case, it will only contain
the request ID, image metadata, and an array of captions. Each caption contains an
image description and the confidence of that description being correct.

We will add this form of image analysis to our smart-house application in a
later chapter.

Chapter 2

[47]

Recognizing celebrities using domain models
One of the features of the Computer Vision API is the ability to recognize domain-
specific content. At the time of writing, the API only supports celebrity recognition,
where it is able to recognize around 200,000 celebrities.

For this example, we choose to use an image from the internet. The UI will then need
a textbox to input the URL. It will need a button to load the image and perform the
domain analysis. There should be an image element to see the image and a textbox to
output the result.

The corresponding ViewModel should have two string properties for the URL and
the analysis result. It should have a BitmapImage property for the image and an
ICommand property for our button.

Add a private variable for the IVisionServiceClient type at the start of the
ViewModel, as follows:

 private IVisionServiceClient _visionClient;

This should be assigned in the constructor, which will take a parameter of the
IVisionServiceClient type.

As we need a URL to fetch an image from the internet, we need to initialize the
Icommand property with both an action and a predicate. The latter checks whether
the URL property is set or not, as shown in the following code:

 public CelebrityViewModel(IVisionServiceClient visionClient) {
 _visionClient = visionClient;
 LoadAndFindCelebrityCommand = new DelegateCommand(LoadAndFindC
elebrity, CanFindCelebrity);
 }

The LoadAndFindCelebrity load creates a Uri with the given URL. Using this, it
creates a BitmapImage and assigns this to ImageSource, the BitmapImage property,
as shown in the following code. The image should be visible in the UI:

 private async void LoadAndFindCelebrity(object obj) {
 UrifileUri = new Uri(ImageUrl);
 BitmapImage image = new BitmapImage(fileUri);

 image.CacheOption = BitmapCacheOption.None;
 image.UriSource = fileUri;

 ImageSource = image;

Analyzing Images to Recognize a Face

[48]

We call the AnalyzeImageInDomainAsync type with the given URL, as shown in the
following code. The first parameter we pass in is the image URL. Alternatively, this
could have been an image that was opened as a Stream type:

 try {
 AnalysisInDomainResultcelebrityResult = await _visionClient.An
alyzeImageInDomainAsync(ImageUrl, "celebrities");

 if (celebrityResult != null)
 Celebrity = celebrityResult.Result.ToString();
 }

The second parameter is the domain model name, which is in a string format.
As an alternative, we could have used a specific Model object, which can be
retrieved by calling the following:

 VisionClient.ListModelsAsync();

This would return an array of Models, which we can display and select from.
As there is only one available at this time, there is no point in doing so.

The result from AnalyzeImageInDomainAsync is an object of the
AnalysisInDomainResult type. This object will contain the request ID, metadata of
the image, and the result, containing an array of celebrities. In our case, we simply
output the entire result array. Each item in this array will contain the name of the
celebrity, the confidence of a match, and the face rectangle in the image. Do try it in
the example code provided.

Utilizing optical character recognition
For some tasks, optical character recognition (OCR) can be very useful. Say that you
took a photo of a receipt. Using OCR, you can read the amount from the photo itself
and have it automatically added to accounting.

OCR will detect text in images and extract machine-readable characters. It will
automatically detect language. Optionally, the API will detect image orientation
and correct it before reading the text.

To specify a language, you need to use the BCP-47 language code. At the time of
writing, the following languages are supported: simplified Chinese, traditional
Chinese, Czech, Danish, Dutch, English, Finnish, French, German, Greek, Hungarian,
Italian, Japanese, Korean, Norwegian, Polish, Portuguese, Russian, Spanish, Swedish,
Turkish, Arabic, Romanian, Cyrillic Serbian, Latin Serbian, and Slovak.

Chapter 2

[49]

In the code example, the UI will have an image element. It will also have a button to
load the image and detect text. The result will be printed to a textbox element.

The ViewModel will need a string property for the result, a BitmapImage property
for the image, and an ICommand property for the button.

Add a private variable to the ViewModel for the Computer Vision API, as follows:

 private IVisionServiceClient _visionClient;

The constructor should have one parameter of the IVisionServiceClient type,
which should be assigned to the preceding variable.

Create a function as a command for our button. Call it BrowseAndAnalyze and have
it accept object as the parameter. Then, open a file browser and find an image to
analyze. With the image selected, we run the OCR analysis, as follows:

 using (StreamfileStream = File.OpenRead(filePath)) {
 OcrResultsanalysisResult = await _visionClient.
RecognizeTextAsync (fileStream);

 if(analysisResult != null)
 OcrResult = PrintOcrResult(analysisResult);
 }

With the image opened as a Stream type, we call the RecognizeTextAsync method.
In this case, we pass on the image as a Stream type, but we could just as easily have
passed on a URL to an image.

Two more parameters may be specified in this call. First, you can specify the
language of the text. The default is unknown, which means that the API will try to
detect the language automatically. Second, you can specify whether or not the API
should detect the orientation of the image. The default is set to false.

If the call succeeds, it will return data in the form of an OcrResults object. We send
this result to a function, the PrintOcrResult function, where we will parse it and
print the text, as follows:

 private string PrintOcrResult(OcrResultsocrResult)
 {
 StringBuilder result = new StringBuilder();

 result.AppendFormat("Language is {0}\n", ocrResult.Language);
 result.Append("The words are:\n\n");

Analyzing Images to Recognize a Face

[50]

First, we create a StringBuilder object, which will hold all the text. The first content
we add to it is the language of the text in the image, as follows:

 foreach(var region in ocrResult.Regions) {
 foreach(var line in region.Lines) {
 foreach(var text in line.Words) {
 result.AppendFormat("{0} ", text.Text);
 }
 result.Append("\n");
 }
 result.Append("\n\n");
 }

The result has an array, which contains the Regions property. Each item represents
recognized text, and each region contains multiple lines. The line variables are
arrays, where each item represents recognized text. Each line contains an array of the
Words property. Each item in this array represents a recognized word.

With all the words appended to the StringBuilder function, we return it as a string.
This will then be printed in the UI, as shown in the following screenshot:

The result also contains the orientation and angle of the text. Combining this with the
bounding box, also included, you can mark each word in the original image.

Chapter 2

[51]

Generating image thumbnails
In today's world, we, as developers, have to consider different screen sizes when
displaying images. The Computer Vision API offers some help with this by
providing the ability to generate thumbnails.

Thumbnail generation, in itself, is not that big a deal. What makes the API clever is
that it analyzes the image and determines the region of interest.

It will also generate smart cropping coordinates. This means that if the specified
aspect ratio differs from the original, it will crop the image, with a focus on the
interesting regions.

In the example code, the UI consists of two image elements and one button. The first
image is the image in its original size. The second is for the generated thumbnail,
which we specify to be 250 x 250 pixels in size.

The View model will need the corresponding properties, two BitmapImages methods
to act as image sources, and one ICommand property for our button command.

Define a private variable in the ViewModel, as follows:

 private IVisionServiceClient _visionClient;

This will be our API access point. The constructor should accept an
IVisionServiceClient object, which should be assigned to the preceding variable.

For the ICommand property, we create a function, BrowseAndAnalyze, accepting an
object parameter. We do not need to check whether we can execute the command.
We will browse for an image each time.

In the BrowseAndAnalyze function, we open a file dialog and select an image. When
we have the image file path, we can generate our thumbnail, as follows:

 using (StreamfileStream = File.OpenRead(filePath))
 {
 byte[] thumbnailResult = await _visionClient.
GetThumbnailAsync(fileStream, 250, 250);

 if(thumbnailResult != null &&thumbnailResult.Length != 0)
 CreateThumbnail(thumbnailResult);
 }

We open the image file so that we have a Stream type. This stream is the first
parameter in our call to the GetThumbnailAsync method. The next two parameters
indicate the width and height that we want for our thumbnail.

Analyzing Images to Recognize a Face

[52]

By default, the API call will use smart cropping, so we do not have to specify it. If we
have a case where we do not want smart cropping, we could add a bool variable as
the fourth parameter.

If the call succeeds, we get a byte array back. This is the image data. If it contains
data, we pass it on to a new function, CreateThumbnail, to create a BitmapImage
object from it, as follows:

 private void CreateThumbnail(byte[] thumbnailResult)
 {
 try {
 MemoryStreamms = new MemoryStream(thumbnailResult);
 ms.Seek(0, SeekOrigin.Begin);

To create an image from a byte array, we create a MemoryStream object from it. We
make sure that we start at the beginning of the array.

Next, we create a BitmapImage object and begin to initialize it. We specify the
CacheOption and set the StreamSource to the MemoryStream variables we created
earlier. Finally, we stop the BitmapImage initialization and assign the image to our
Thumbnail property, as shown in the following code:

 BitmapImage image = new BitmapImage();
 image.BeginInit();
 image.CacheOption = BitmapCacheOption.None;
 image.StreamSource = ms;
 image.EndInit();

 Thumbnail = image;

Close up the try clause and add the corresponding catch clause. You should now
be able to generate thumbnails.

Diving deep into the Face API
The Face API has two main features. The first one is face detection and the other is
face recognition.

Face detection allows us to detect up to 64 faces in one image. We have already seen
the basic usage. The features of face recognition are implied in its name: using it, we
can detect whether two faces belong to the same person. We can find similar faces, or
one in particular, and we can group similar faces. We will learn how to do all of this
in the following sections.

Chapter 2

[53]

When calling any of the APIs, it will respond with one of the following responses:

Code Description
200 Successful call. It returns an array containing data related to the API call.

400 Request body is invalid. This can be a number of errors, depending on the
API call. Typically, the request code is invalid.

401 Access denied because of an invalid subscription key. The key may be wrong
or the account/subscription plan may be blocked.

403 Out of call volume data. You have made all the available calls to the API for
this month.

415 Invalid media type.

429 Rate limit is exceeded. You will need to wait a period of time (less than one
minute in the free preview) before you try again.

Retrieving more information from the
detected faces
In Chapter 1, Getting Started with Azure Cognitive Services, we learned the very basic
form of face detection. In the example, we retrieved a Face array. This contained
information on all faces that were found in an image. In that specific example, we
obtained information about the face rectangle, face ID, face landmarks, and age.

When calling the API, there are four request parameters, as shown in the
following table:

Parameter Description

image

• The image in which to search for faces. It will either be
in the form of a URL or binary data.

• Supported formats are JPEG, PNG, GIF, and BMP.
• The maximum file size is 4 MB.
• The size of detectable faces is between 36 x 36 pixels

and 4096 x 4096 pixels.

return FaceId (optional) Boolean value. This specifies whether the response should
include the face ID or not.

return FaceLandmarks
(optional)

Boolean value. This specifies whether the response should
include FaceLandmarks in detected faces.

Analyzing Images to Recognize a Face

[54]

Parameter Description

return FaceAttributes
(optional)

• String value. This is a comma-separated string
containing all face attributes that are to be analyzed.

• Supported attributes are age, gender, head pose, smile,
facial hair, emotion, and glasses.

• These attributes are still experimental, and should be
treated as such.

If a face is successfully discovered, it will expire in 24 hours. When calling other parts
of the Face API, you are often required to have a face ID as an input. In those cases,
we need to detect a face first, followed by the call to the API we wish to use, using
the detected face as a parameter.

Using this knowledge, I challenge you to play around with the example in Chapter 1,
Getting Started with Azure Cognitive Services. Draw a rectangle around the face. Mark
the eyes in the image.

Deciding whether two faces belong to the
same person
To decide whether two faces belong to the same person, we are going to call the
Verify function of the API. The API allows us to detect when two faces are of the
same person, which is called face-to-face verification. Detecting whether a face
belongs to a specific person is called face-to-person verification.

The UI will consist of three button elements, two image elements, and one text
block element. Two of the buttons will be used to browse for images, which are then
shown in each image element. The last button will run the verification. The text block
will output the result.

Lay out the UI how you want and bind the different elements to properties in the
ViewModel, as we have done previously. In the ViewModel, there should be two
BitmapImage properties for the image elements. There should be one string
property, containing the verification result. Finally, there should be three ICommand
properties, one for each of our buttons.

Remember to add the UI to the MainView.xaml file as a new TabItem. In addition,
add the ViewModel to the MainViewModel.cs file, where you will also need to add
a new variable for the FaceServiceClient variable. This should be created with
the Face API key, which we signed up for in Chapter 1, Getting Started with Azure
Cognitive Services.

Chapter 2

[55]

In the ViewModel, we need to declare the following three private variables:

 private FaceServiceClient _faceServiceClient;
 private Guid _faceId1 = Guid.Empty;
 private Guid _faceId2 = Guid.Empty;

We have seen the first one before; it will access the Face API. The two Guid variables
will be assigned when we have run the face detection.

The constructor accepts one parameter, which is our FaceServiceClient object.
This is assigned to the previously created variable, as shown in the following code:

 public FaceVerificationViewModel
(FaceServiceClientfaceServiceClient)
 {
 _faceServiceClient = faceServiceClient;
 Initialize();
 }

From the constructor, we call the Initialize function to create the
DelegateCommand properties, as follows:

 private void Initialize()
 {
 BrowseImage1Command = new DelegateCommand(BrowseImage1);
 BrowseImage2Command = new DelegateCommand(BrowseImage2);
 VerifyImageCommand = new DelegateCommand(VerifyFace,
CanVerifyFace);
 }

The browse commands do not need to be disabled at any point, so we just pass on
the command function, as follows:

 private async void BrowseImage1(object obj) {
 Image1Source = await BrowseImageAsync(1);
 }

Both functions will look similar. We call another function to browse for an image and
detect a face. To separate each image, we pass on the image number.

The BrowseImageAsync function will accept an int type as a parameter. It returns a
BitmapImage object, which we assign to the BitmapImage property bound to our UI.
The first part opens a browse dialog and returns the selected image. We will jump in
when we have the image and the path to that image.

Analyzing Images to Recognize a Face

[56]

We open the image as a Stream object. The Stream object is used in the API call to
detect faces. When we call the API, we can use the default call, as it will return the
value we are interested in, as shown in the following code:

 try {
 using (Stream fileStream = File.OpenRead(filePath)) {
 Face[] detectedFaces = await _faceServiceClient.
DetectAsync(fileStream);

When the detection process has completed, we check to see which image this is and
assign the FaceId parameter to the correct Guid variable using the following code.
For this example, we are assuming that there will be only one face per image:

 if (imagenumber == 1)
 _faceId1 = detectedFaces[0].FaceId;
 else
 _faceId2 = detectedFaces[0].FaceId;
 }
 }

Finish off the function by adding catch clauses as you see fit. You also need to create
and return a BitmapImage parameter from the selected image.

Before the button for the face verification is enabled, we perform a check to see if
both face IDs have been set using the following code:

 private bool CanVerifyFace(object obj)
 {
 return !_faceId1.Equals(Guid.Empty) &&! _faceId2.Equals(Guid.
Empty);
 }

The VerifyFace function is not a complex one, as you can see in the following code:

 private async void VerifyFace(object obj) {
 try {
 VerifyResultverificationResult = await _
faceServiceClient.VerifyAsync(_faceId1, _faceId2);

With the face IDs set, we can make a call to the VerifyAsync function of the API. We
pass on the face IDs as parameters and get a VerifyResult object in return. We use
this object to provide the output, as follows:

 FaceVerificationResult = $"The two provided faces is
identical: {verificationResult.IsIdentical}, with confidence:
{verificationResult.Confidence}";
 }

Chapter 2

[57]

A successful call will return a code 200 response. The response data is a bool type
variable, isIdentical, and a number, confidence:

At the time of writing, the NuGet package for the Face API only allows for face-to-
face verification. If we were calling directly to the REST API, we could have utilized
face-to-person verification as well.

To use face-to-person verification, only one image is required. You will need to
pass on the face ID for that image. You will also need to pass on a person group
ID, and a person ID. These are to specify a specific person group to search in and a
certain person within that group. We will cover person groups and persons later in
this chapter.

Finding similar faces
Using the Face API, you can find faces similar to a provided face. The API allows for
two search modes. Match person mode is the default mode. This will match faces to
the same person, according to an internal same-person threshold. The other is match
face mode, which will ignore the same-person threshold. This returns matches that
are similar, but the similarity may be low.

Analyzing Images to Recognize a Face

[58]

In the example code provided, we have three buttons in our UI: one for generating a
face list, another for adding faces to the list, and, finally, one to find similar faces. We
need a textbox to specify a name for the face list. For convenience, we add a list box,
outputting the persisted face IDs from the face list. We also add an image element to
show the image we are checking, and a textbox outputting the result.

In the corresponding ViewModel, we need to add a BitmapImage property
for the image element. We need two string properties: one for our face-list
name and one for the API call result. To get data to our list box, we need an
ObservableCollection property containing Guids. The buttons need to be
hooked up to individual ICommand properties.

We declare two private variables at the start of the ViewModel, as shown in the
following code. The first one is a bool variable to indicate whether or not the face
list already exists. The other is used to access the Face API:

 private bool _faceListExists = false;
 private FaceServiceClient _faceServiceClient;

The constructor should accept the FaceServiceClient parameter, which it assigns
to the preceding variable. It will then call an Initialize function, as follows:

 private async void Initialize()
 {
 FaceListName = "Chapter2";

 CreateFaceListCommand = new DelegateCommand(CreateFaceListAsy
nc, CanCreateFaceList);
 FindSimilarFaceCommand = new DelegateCommand(FindSimilarFace);
 AddExampleFacesToListCommand = new DelegateCommand(AddExampleF
acesToList, CanAddExampleFaces);

First, we initialize the FaceListName property to Chapter2. Next, we create the
command objects, specifying actions and predicates.

We finish the Initialize function by calling two functions, as shown in the
following code. One checks whether the face list exists, while the second updates
the list of face IDs:

 await DoesFaceListExistAsync();
 UpdateFaceGuidsAsync();
 }

Chapter 2

[59]

To check whether a given face list exists, we first need to get a list of all face lists.
We do this by calling the ListFaceListsAsync method, which will return a
FaceListMetadata array. We make sure that the result has data before we loop
through the array, as shown in the following code:

 private async Task DoesFaceListExistAsync()
 {
 FaceListMetadata[] faceLists = await _faceServiceClient.
ListFaceListsAsync();

Each FaceListMetadata array, from the resultant array, contains a face-list ID,
a name of the face list, and user-provided data. For this example, we are just
interested in the name. If the face-list name that we have specified is the name
of any face list returned, we set the _faceListExists parameter to true,
as shown in the following code:

 foreach (FaceListMetadatafaceList in faceLists) {
 if (faceList.Name.Equals(FaceListName)) {
 _faceListExists = true;
 break;
 }
 }

If the face list exists, we can update the list of face IDs.

To get the faces in a face list, we need to get the face list first. This is done with a call
to the Face API's function, the GetFaceListAsync method. This requires the face-list
ID to be passed as a parameter. The face-list ID needs to be in lowercase or digits,
and can contain a maximum of 64 characters. For the sake of simplicity, we use the
face-list name as the face ID, as follows:

 private async void UpdateFaceGuidsAsync() {
 if (!_faceListExists) return;

 try {
 FaceListfaceList = await _faceServiceClient.
GetFaceListAsync(FaceListName.ToLower());

The result of this API call is a FaceList object, containing the face-list ID and face-
list name. It also contains user-provided data and an array of persisted faces.

Analyzing Images to Recognize a Face

[60]

We check whether we have any data and then get the array of persisted faces.
Looping through this array, we are able to get the PersistedFaceId parameter (as a
guid variable) and user-provided data of each item. The persisted face ID is added to
the FaceIds ObservableCollection, as shown in the following code:

 if (faceList == null) return;

 PersonFace[] faces = faceList.PersistedFaces;

 foreach (PersonFace face in faces) {
 FaceIds.Add(face.PersistedFaceId);
 }

Finish the function by adding the corresponding catch clause.

If the face list does not exist and we have specified a face-list name, then we can
create a new face list, as follows:

 private async void CreateFaceListAsync(object obj) {
 try {
 if (!_faceListExists) {
 await _faceServiceClient.CreateFaceListAsync (
FaceListName.ToLower(), FaceListName, string.Empty);
 await DoesFaceListExistAsync();
 }
 }

First, we check to see that the face list does not exist. Using the _faceServiceClient
parameter, you are required to pass on a face-list ID, a face-list name, and user data.
As seen previously, the face-list ID needs to be lowercase characters or digits.

Using the REST API, the user parameter is optional, and as such, you would not
have to provide it.

After we have created a face list, we want to ensure that it exists. We do this by a call
to the previously created DoesFaceListExistAsync function. Add the catch clause
to finish the function.

If the named face list exists, we can add faces to this list. Add the
AddExampleFacesToList function. It should accept object as a parameter. I will
leave the details of adding the images up to you. In the provided example, we get a
list of images from a given directory and loop through it.

Chapter 2

[61]

With the file path of a given image, we open the image as a Stream. To optimize it
for our similarity operation, we find the FaceRectangle parameter in an image. As
there should be only one face per image in the face list, we select the first element in
the Face array, as follows:

 using (StreamfileStream = File.OpenRead(image))
 {
 Face[] faces = await _faceServiceClient.
DetectAsync(fileStream);
 FaceRectanglefaceRectangle = faces[0].FaceRectangle;

Adding the face to the face list is as simple as calling the AddFaceToFaceListAsync
function. We need to specify the face-list ID and the image. The image may come
from a Stream (as in our case) or a URL. Optionally, we can add user data and the
face rectangle of the image, as follows:

AddPersistedFaceResult addFacesResult = await _faceServiceClient.
AddFaceToFaceListAsync(FaceListName.ToLower(), fileStream, null,
faceRectangle);
UpdateFaceGuidsAsync();

The result of the API call is an AddPersistedFaceResult variable. This contains the
persisted face ID, which is different from a face ID in the DetectAsync call. A face
added to a face list will not expire until it is deleted.

We finish the function by calling the UpdateFaceGuidsAsync method.

Finally, we create our FindSimilarFace function, also accepting object as a
parameter. To be able to search for similar faces, we need a face ID (the Guid
variable) from the DetectAsync method. This can be called with a local image or
from a URL. The example code opens a file browser and allows the user to browse
for an image.

With the face ID, we can search for similar faces, as shown in the following code:

 try {
 SimilarPersistedFace[] similarFaces = await _
faceServiceClient.FindSimilarAsync (findFaceGuid, FaceListName.
ToLower(), 3);

We call the FindSimilarAsync function. The first parameter is the face ID of the face
we specified. The next parameter is the face-list ID, and the final parameter is the
number of candidate faces returned. The default for this is 20, so it is often best to
specify a number.

Analyzing Images to Recognize a Face

[62]

Instead of using a face list to find similar faces, you can use an array of
the Guid variable. That array should contain face IDs retrieved from the
DetectAsync method.

At the time of writing, the NuGet API package only supports match person mode.
If you are using the REST API directly, you can specify the mode as a parameter.

Depending on the mode selected, the result will contain either the face ID or the
persisted face ID of similar faces. It will also contain the confidence of the similarity
of the given face.

To delete a face from the face list, call the following function in the Face API:

 DeleteFaceFromFaceListAsync(FACELISTID, PERSISTEDFACEID)

To delete a face list, call the following function in the Face API:

 DeleteFaceListAsync(FACELISTID)

To update a face list, call the following function in the Face API:

 UpdateFaceListAsync(FACELISTID, FACELISTNAME, USERDATA)

Grouping similar faces
If you have several images of faces, one thing you may want to do is group the faces.
Typically, you will want to group faces based on similarity, which is a feature the
Face API provides.

By providing the API with a list of face IDs, it will respond with one or more groups.
One group consists of faces that are similar looking. Usually, this means that the
faces belong to the same person. Faces that cannot find any similar counterparts are
placed in a group we'll call MessyGroup.

Create a new View called FaceGroupingView.xaml. The View should have six image
elements, with corresponding titles and textboxes for face IDs. It should also have a
button for our group command and a textbox to output the grouping result.

In the corresponding FaceGroupingViewModel.xaml View model, you should
add the BitmapImage properties for all images. You should also add the string
properties for the face IDs and one for the result. There is also a need for an
ICommand property.

Chapter 2

[63]

At the start of the ViewModel, we declare some private variables, as follows:

 private FaceServiceClient _faceServiceClient;
 private List<string> _imageFiles = new List<string>();
 private List<Guid> _faceIds = new List<Guid>();

The first one is used to access the Face API. The second one contains a list of strings
that in turn contain the location of our images. The last list contains the detected
face IDs.

The constructor accepts a parameter of the FaceServiceClient type. It assigns it
to the corresponding variable and calls the Initialize function. This creates our
ICommand object and calls a function to add our images to the application.

In the function that adds images, we add hardcoded image paths to our _
imageFiles list. For this example, we add six. Using a for loop, we generate each
BitmapImage property. When we have an image, we want to detect faces in it:

 try {
 using (Stream fileStream = File.OpenRead(_imageFiles[i])) {
 Face[] faces = await
 _faceServiceClient.DetectAsync(fileStream);

We do not need any more data than the generated face ID, which we know is stored
for 24 hours after detection:

 _faceIds.Add(faces[0].FaceId);
 CreateImageSources(image, i, faces[0].FaceId);
 }
 }

Assuming that there is only one face per image, we add that face ID to our _faceIds
list. The image, face ID, and current iteration number in the loop are passed on to a
new function, CreateImageSources. This function contains a switch case based on
the iteration number. Based on the number, we assign the image and face ID to the
corresponding image and image ID property. This is then shown in the UI.

We have a button to group the images. To group the images, we call the Face API's
GroupAsync method, passing on an array of face IDs, as shown in the following code.
The array of face IDs must contain at least two elements, and it cannot contain more
than 1,000 elements:

 private async void GroupFaces(object obj) {
 try {
 GroupResultfaceGroups = await _faceServiceClient.
GroupAsync(_faceIds.ToArray());

Analyzing Images to Recognize a Face

[64]

The response is a GroupResult type, which may contain one or more groups, as well
as the messy group. We check to see whether there is a response and then we parse
it, as shown in the following code:

 if (faceGroups != null)
 FaceGroupingResult = ParseGroupResult(faceGroups);
 }

Before looking at the ParseGroupResult method, add the corresponding catch
clause and close-up GroupFaces function.

When parsing the results, we first create a StringBuilder class to hold our text.
Then we get the groups from the result. A group is an array of face IDs of the images
in that group. All groups are stored in a list, and we append the number of groups to
the StringBuilder class, as shown in the following code:

private string ParseGroupResult(GroupResultfaceGroups) {
 StringBuilder result = new StringBuilder();
 List<Guid[]>groups = faceGroups.Groups;
 result.AppendFormat("There are {0} group(s)\n", groups.Count);

We loop through the list of groups. Inside this loop, we loop through each item in
the group. For the sake of readability, we have a helper function to find the image
name from the ID. It finds the index in our _faceIds list. This is then used in the
image name, so if the index is 2, the image name would be Image 3. For this to give
the intended effect, you must have placed the images in a logical order, as follows:

 result.Append("Groups:\t");

 foreach(Guid[] guid in groups)
 {
 foreach(Guid id in guid)
 {
 result.AppendFormat("{0} - ", GetImageName(id));
 }
 result.Append("\n");
 }

The GroupResult method may also contain a MessyGroup array. This is an array of
Guid variables containing the face IDs in that group. We loop through this array and
append the image name, the same way we did with the regular groups, as shown in
the following code:

 result.Append("Messy group:\t");

 Guid[] messyGroup = faceGroups.MessyGroup;

Chapter 2

[65]

 foreach(Guidguid in messyGroup)
 {
 result.AppendFormat("{0} - ", GetImageName(guid));
 }

We end the function by returning the StringBuilder function's text, which will
output it to the screen, as follows:

 return result.ToString();
 }

Make sure that the ViewModel instances have been created in the MainViewModel.
cs file. Also, make sure that the View has been added as a TabItem property in the
MainView.xaml file. Compile and test the application.

If you are using the sample images provided, you may end up with something like
the following:

Analyzing Images to Recognize a Face

[66]

Adding identification to our smart-house
application
As a part of our smart-house application, we want the application to recognize who
we are. Doing so opens up the opportunity to get responses and actions from the
application, tailored to you.

Creating our smart-house application
Create a new project for the smart-house application, based on the MVVM template
we created earlier.

With the new project created, add the Microsoft.ProjectOxford.Face
NuGet package.

As we will be building this application throughout this book, we will start small. In
the MainView.xaml file, add a TabControl property containing two items. The two
items should be two user controls, one called the AdministrationView.xaml file
and the other called the HomeView.xaml file.

The administration control will be where we administer different parts of the
application. The home control will be the starting point and the main control
to use.

Add corresponding ViewModel instances to the Views. Make sure they are declared
and created in MainViewModel.cs, as we have seen throughout this chapter. Make
sure that the application compiles and runs before moving on.

Adding people to be identified
Before we can go on to identify a person, we need to have something to identify
them from. To identify a person, we need a PersonGroup property. This is a group
that contains several Persons properties.

Creating a view
In the administration control, we will execute several operations in this regard. The
UI should contain two textbox elements, two list box elements, and six buttons. The
two textbox elements will allow us to input a name for the person group and a name
for the person. One list box will list all person groups that we have available. The
other will list all the persons in any given group.

Chapter 2

[67]

We have buttons for each of the operations that we want to execute, which are
as follows:

• Add person group
• Delete person group
• Train person group
• Add person
• Delete person
• Add person face

The View model should have two ObservableCollection properties: one
of a PersonGroup type and the other of a Person type. We should also add three
string properties. One will be for our person group name, the other for our person
name. The last will hold some status text. We also want a PersonGroup property
for the selected person group. Finally, we want a Person property holding the
selected person.

In our View model, we want to add a private variable for the FaceServiceClient
method, as shown in the following code:

 private FaceServiceClient _faceServiceClient;

This should be assigned in the constructor, which should accept a parameter of a
FaceServiceClient type. It should also call an initialization function, which will
initialize six ICommand properties. These maps to the buttons, created earlier. The
initialization function should call the GetPersonGroups function to list all person
groups available, as shown in the following code:

 private async void GetPersonGroups() {
 try {
 PersonGroup[] personGroups = await
 _faceServiceClient.ListPersonGroupsAsync();

The ListPersonGroupsAsync function does not take any parameters, and returns a
PersonGroup array if successfully executed, as shown in the following code:

 if(personGroups == null || personGroups.Length == 0)
 {
 StatusText = "No person groups found.";
 return;
 }

 PersonGroups.Clear();

Analyzing Images to Recognize a Face

[68]

 foreach (PersonGrouppersonGroup in personGroups)
 {
 PersonGroups.Add(personGroup);
 }
 }

We then check to see whether the array contains any elements. If it does, we clear out
the existing PersonGroups list. Then we loop through each item of the PersonGroup
array and add them to the PersonGroups list.

If no person groups exist, we can add a new one by filling in a name. The name
you fill in here will also be used as a person group ID. This means that it can
include numbers and English lowercase letters, the "-" character (hyphen), and
the "_" character (underscore). The maximum length is 64 characters. When it
is filled in, we can add a person group.

Adding person groups
First, we call the DoesPersonGroupExistAsync function, specifying
PersonGroupName as a parameter, as shown in the following code. If this is true,
then the name we have given already exists, and as such, we are not allowed to add
it. Note how we call the ToLower function on the name. This is so we are sure that
the ID is in lowercase:

 private async void AddPersonGroup(object obj) {
 try {
 if(await DoesPersonGroupExistAsync(PersonGroupName.
ToLower())) {
 StatusText = $"Person group {PersonGroupName} already
exist";
 return;
 }

If the person group does not exist, we call the CreatePersonGroupAsync function, as
shown in the following code. Again, we specify the PersonGroupName as lowercase
in the first parameter. This represents the ID of the group. The second parameter
indicates the name we want. We end the function by calling the GetPersonGroups
function again, so we get the newly added group in our list:

 await _faceServiceClient.CreatePersonGroupAsync
(PersonGroupName.ToLower(), PersonGroupName);
 StatusText = $"Person group {PersonGroupName} added";
 GetPersonGroups();
 }

Chapter 2

[69]

The DoesPersonGroupExistAsync function makes one API call. It tries to call the
GetPersonGroupAsync function, with the person group ID specified as a parameter.
If the resultant PersonGroup list is anything but null, we return true.

To delete a person group, a group must be selected as follows:

 private async void DeletePersonGroup(object obj)
 {
 try
 {
 await _faceServiceClient.DeletePersonGroupAsync
(SelectedPersonGroup.PersonGroupId);
 StatusText = $"Deleted person group {SelectedPersonGroup.
Name}";

 GetPersonGroups();
 }

The API call to the DeletePersonGroupAsync function requires a person group ID
as a parameter. We get this from the selected person group. If no exception is caught,
then the call has completed successfully, and we call the GetPersonGroups function
to update our list.

When a person group is selected from the list, we make sure that we call the
GetPersons function. This will update the list of persons, as follows:

 private async void GetPersons()
 {
 if (SelectedPersonGroup == null)
 return;

 Persons.Clear();

 try
 {
 Person[] persons = await _faceServiceClient.GetPersonsAsyn
c(SelectedPersonGroup.PersonGroupId);

We make sure the selected person group is not null. If it is not, we clear our
persons list. The API call to the GetPersonsAsync function requires a person
group ID as a parameter. A successful call will result in a Person array.

Analyzing Images to Recognize a Face

[70]

If the resultant array contains any elements, we loop through it. Each Person object
is added to our persons list, as shown in the following code:

 if (persons == null || persons.Length == 0)
 {
 StatusText = $"No persons found in
{SelectedPersonGroup.Name}.";
 return;
 }

 foreach (Person person in persons)
 {
 Persons.Add(person);
 }
 }

Adding new persons
If no persons exist, we can add new ones. To add a new one, a person group must be
selected, and a name of the person must be filled in. With this in place, we can click
on the Add button:

 private async void AddPerson(object obj)
 {
 try
 {
 CreatePersonResultpersonId = await _faceServiceClient.Crea
tePersonAsync(SelectedPersonGroup.PersonGroupId, PersonName);
 StatusText = $"Added person {PersonName} got ID:
{personId.PersonId.ToString()}";

 GetPersons();
 }

The API call to the CreatePersonAsync function requires a person group ID as the
first parameter. The next parameter is the name of the person. Optionally, we can
add user data as a third parameter. In this case, it should be a string. When a new
person has been created, we update the persons list by calling the GetPersons
function again.

Chapter 2

[71]

If we have selected a person group and a person, then we will be able to delete that
person, as shown in the following code:

 private async void DeletePerson(object obj)
 {
 try
 {
 await _faceServiceClient.DeletePersonAsync
(SelectedPersonGroup.PersonGroupId, SelectedPerson.PersonId);

 StatusText = $"Deleted {SelectedPerson.Name} from
{SelectedPersonGroup.Name}";

 GetPersons();
 }

To delete a person, we make a call to the DeletePersonAsync function. This requires
the person group ID of the person group the person lives in. It also requires the ID
of the person we want to delete. If no exceptions are caught, then the call succeeded,
and we call the GetPersons function to update our person list.

Our administration control now looks similar to the following screenshot:

Analyzing Images to Recognize a Face

[72]

Associating faces with a person
Before we can identify a person, we need to associate faces with that person. With a
given person group and person selected, we can add faces. To do so, we open a file
dialog. When we have an image file, we can add the face to the person, as follows:

 using (StreamimageFile = File.OpenRead(filePath))
 {
 AddPersistedFaceResultaddFaceResult = await _
faceServiceClient.AddPersonFaceAsync(
 SelectedPersonGroup.PersonGroupId,
 SelectedPerson.PersonId, imageFile);

 if (addFaceResult != null)
 {
 StatusText = $"Face added for {SelectedPerson.Name}.
Remember to train the person group!";
 }
 }

We open the image file as a Stream. This file is passed on as the third parameter in
our call to the AddPersonFaceAsync function. Instead of a stream, we could have
passed a URL to an image.

The first parameter in the call is the person group ID of the group in which the
person lives. The next parameter is the person ID.

Some optional parameters to include are user data in the form of a string and a
FaceRectangle parameter for the image. The FaceRectangle parameter is required
if there is more than one face in the image.

A successful call will result in an AddPersistedFaceResult object. This contains the
persisted face ID for the person.

Each person can have a maximum of 248 faces associated with it. The more faces
you can add, the more likely it is that you will receive a solid identification later.
The faces that you add should from slightly different angles.

Training the model
With enough faces associated with the persons, we need to train the person group.
This is a task that is required after any change to a person or person group.

Chapter 2

[73]

We can train a person group when one has been selected, as shown in the following
code:

 private async void TrainPersonGroup(object obj)
 {
 try
 {
 await _faceServiceClient.TrainPersonGroupAsync(
SelectedPersonGroup.PersonGroupId);

The call to the TrainPersonGroupAsync function takes a person group ID as a
parameter, as shown in the following code. It does not return anything, and it may
take a while to execute:

 while(true)
 {
 TrainingStatustrainingStatus = await _
faceServiceClient.GetPersonGroupTrainingStatusAsync
(SelectedPersonGroup.PersonGroupId);

We want to ensure that the training completed successfully. To do so, we call the
GetPersonGroupTrainingStatusAsync function inside a while loop. This call
requires a person group ID, and a successful call results in a TrainingStatus object,
as shown in the following code:

 if(trainingStatus.Status != Status.Running)
 {
 StatusText = $"Person group finished with status:
{trainingStatus.Status}";
 break;
 }

 StatusText = "Training person group...";
 await Task.Delay(1000);
 }
 }

We check the status and we show the result if it is not running. If the training is still
running, we wait for one second and run the check again.

When the training has succeeded, we are ready to identify people.

Analyzing Images to Recognize a Face

[74]

Additional functionality
There are a few API calls that we have not looked at, which will be mentioned briefly
in the following bullet list:

• To update a person group, call the following; this function does not
return anything:
 UpdatePersonGroupAsync(PERSONGROUPID, NEWNAME, USERDATA)

• To get a person's face, call the following:
 GetPersonFaceAsync(PERSONGROUPID, PERSONID,
PERSISTEDFACEID)

A successful call returns the persisted face ID and user-provided data.

• To delete a person's face, call the following; this call does not
return anything:
 DeletePersonFaceAsync(PERSONGROUPID, PERSONID,
PERSISTEDFACeID)

• To update a person, call the following; this call does not return anything:
 UpdatePersonAsync(PERSONGROUPID, PERSONID, NEWNAME,
USERDATA)

• To update a person's face, call the following; this call does not
return anything:
 UpdatePersonFaceAsync(PERSONGROUID, PERSONID,
PERSISTEDFACEID, USERDATA)

Identifying a person
To identify a person, we are first going to upload an image. Open the HomeView.
xaml file and add a ListBox element to the UI. This will contain the person groups to
choose from when identifying a person. We will need to add a button element to find
an image, upload it, and identify the person. A TextBox element is added to show
the working response. For our own convenience, we also add an image element to
show the image we are using.

In the View model, add an ObservableCollection property of a PersonGroup
type. We need to add a property for the selected PersonGroup type. Also, add a
BitmapImage property for our image, and a string property for the response.
We will also need an ICommand property for our button.

Chapter 2

[75]

Add a private variable for the FaceServiceClient type, as follows:

 private FaceServiceClient _faceServiceClient;

This will be assigned in our constructor, which should accept a parameter of a
FaceServiceClient type. From the constructor, call on the Initialize function
to initialize everything, as shown in the following code:

 private void Initialize()
 {
 GetPersonGroups();
 UploadOwnerImageCommand = new DelegateCommand(UploadOwnerImage
,CanUploadOwnerImage);
 }

First, we call the GetPersonGroups function to retrieve all the person groups. This
function makes a call to the ListPersonGroupsAsync API, which we saw earlier.
The result is added to our PersonGroup list's ObservableCollection parameter.

Next, we create our ICommand object. The CanUploadOwnerImage function will return
true if we have selected an item from the PersonGroup list. If we have not, it will
return false, and we will not be able to identify anyone.

In the UploadOwnerImage function, we first browse to an image and then load it.
With an image loaded and a file path available, we can start to identify the person
in the image, as shown in the following code:

 using (StreamimageFile = File.OpenRead(filePath))
 {
 Face[] faces = await _faceServiceClient.
DetectAsync(imageFile);
 Guid[] faceIds = faces.Select(face =>face.FaceId).ToArray();

We open the image as a Stream type, as shown in the following code. Using this, we
detect faces in the image. From the detected faces, we get all the face IDs in an array:

 IdentifyResult[] personsIdentified = await _faceServiceClient.
IdentifyAsync (SelectedPersonGroup.PersonGroupId,
faceIds, 1);

Analyzing Images to Recognize a Face

[76]

The array of face IDs will be sent as the second parameter to the IdentifyAsync API
call. Remember that when we detect a face, it is stored for 24 hours. Proceeding to
use the corresponding face ID will make sure that the service knows which face to
use for identification.

The first parameter used is the ID of the person group we have selected. The last
parameter in the call is the number of candidates returned. As we do not want to
identify more than one person at a time, we specify one. Because of this, we should
ensure that there is only one face in the image we upload.

A successful API call will result in an array of the IdentifyResult parameter, as
shown in the following code. Each item in this array will contain candidates:

 foreach(IdentifyResultpersonIdentified in personsIdentified) {
 if(personIdentified.Candidates.Length == 0) {
 SystemResponse = "Failed to identify you.";
 break;
 }
 GuidpersonId = personIdentified.Candidates[0].PersonId;

We loop through the array of results, as shown in the following code. If we do
not have any candidates, we just break out of the loop. If, however, we do have
candidates, we get the PersonId parameter of the first candidate (we asked for
only one candidate earlier, so this is okay):

 Person person = await faceServiceClient.GetPersonAsync(
SelectedPersonGroup.PersonGroupId, personId);

 if(person != null) {
 SystemResponse = $"Welcome home, {person.Name}";
 break;
 }
 }
}

With the personId parameter, we get a single Person object, using the API to call the
GetPersonAsync function. If the call is successful, we print a welcome message to
the correct person (as shown in the following screenshot) and break out of the loop:

Chapter 2

[77]

Knowing your mood using the Face API
The Face API allows you to recognize emotions from faces.

Research has shown that there are some key emotions that can be classified as
cross-cultural. These are happiness, sadness, surprise, anger, fear, contempt,
disgust, and neutral. All of these are detected by the API, which allows your
applications to respond in a more personalized way by knowing the user's mood.

Analyzing Images to Recognize a Face

[78]

We will learn how to recognize emotions from images so that our smart-house
application can know our mood.

Getting images from a web camera
Imagine that there are several cameras around your house. The smart-house
application can see what your mood is at any time. By knowing this, it can utilize the
mood to better predict your needs.

We are going to add web-camera capabilities to our application. If you do not have
a web camera, you can follow along, but load images using the techniques we have
already seen.

First we need to add a NuGet package to our smart-house application. Search for
OpenCvSharp3-AnyCPU and install the package by shimat. This is a package that
allows for the processing of images, and is utilized by the next dependency we are
going to add.

In the example code provided, there is a project called VideoFrameAnalyzer. This is
a project written by Microsoft that allows us to grab frame-by-frame images from a
web camera. Using this, we are able to analyze emotions in our application. The use
case we will execute is as follows:

In our HomeView.xaml file, add two new buttons. One will be to start the web camera
while the other will be to stop it.

Chapter 2

[79]

In the corresponding View model, add two ICommand properties for each of the
buttons. Also add the following private members:

 private FrameGrabber<CameraResult> _frameGrabber;
 private static readonly ImageEncodingParam[] s_jpegParams = {
 new ImageEncodingParam(ImwriteFlags.JpegQuality, 60)
 };

The first one is a FrameGrabber object, which is from the VideoFrameAnalyzer
project. The static member is an array of parameters for images, and is used when
fetching web camera images. Additionally, we need to add a CameraResult class,
which should be within the ViewModel file.

We initialize the EmotionScores to null, as shown in the following code. This
is done so that new emotion scores always will be assigned from the most resent
analysis result:

 internal class CameraResult {
 public EmotionScores EmotionScores { get; set; } = null;
 }

Add an initialization of the _frameGrabber member in the constructor and add the
following in the Initialization function:

 _frameGrabber.NewFrameProvided += OnNewFrameProvided;

Each time a new frame is provided from the camera, an event is raised.

When we receive new frames, we want to create a BitmapImage from it to show it in
the UI. To do so requires us to invoke the action from the current dispatcher, as the
event is triggered from a background thread, as shown in the following code:

 private void OnNewFrameProvided(object sender,
FrameGrabber<CameraResult>.NewFrameEventArgs e) {
 Application.Current.Dispatcher.Invoke(() => {
 BitmapSource bitmapSource = e.Frame.Image.
ToBitmapSource();

 JpegBitmapEncoder encoder = new JpegBitmapEncoder();
 MemoryStream memoryStream = new MemoryStream();
 BitmapImage image = new BitmapImage();

We get the BitmapSource of the Frame and create some required variables.

Analyzing Images to Recognize a Face

[80]

Using the encoder we created, we add the bitmapSource and save it to the
memoryStream, as follows:

 encoder.Frames.Add(BitmapFrame.Create(bitmapSource));
 encoder.Save(memoryStream);

This memoryStream is then assigned to the BitmapImage we created, as shown in the
following code. This is in turn assigned to the ImageSource, which will show the
frame in the UI:

 memoryStream.Position = 0;
 image.BeginInit();
 image.CacheOption = BitmapCacheOption.OnLoad;
 image.StreamSource = memoryStream;
 image.EndInit();

 memoryStream.Close();
 ImageSource = image;

As this event will be triggered a lot, we will get a fluent stream in the UI, and it will
seem like it is a direct video feed.

In our Initialization function, we will also need to create our ICommand for the
buttons, as follows:

 StopCameraCommand = new DelegateCommand(StopCamera);
 StartCameraCommand = new DelegateCommand(StartCamera,
CanStartCamera);

To be able to start the camera, we need to have selected a person group, and we need
to have at least one camera available:

 private bool CanStartCamera(object obj) {
 return _frameGrabber.GetNumCameras() > 0 &&
SelectedPersonGroup != null;
 }

To start a camera, we need to specify which camera to use and how often we want to
trigger an analysis using the following code:

 private async void StartCamera(object obj) {
 _frameGrabber.TriggerAnalysisOnInterval(TimeSpan.
FromSeconds(5));
 await _frameGrabber.StartProcessingCameraAsync();
 }

Chapter 2

[81]

If no camera is specified in StartProcessingCameraAsync, the first one available is
chosen by default.

We will get back to the analysis part of this process soon.

To stop the camera, we run the following command:

 private async void StopCamera(object obj) {
 await _frameGrabber.StopProcessingAsync();
 }

Letting the smart house know your mood
We now have a video from the web camera available for our use.

In the FrameGrabber class, there is a Func, which will be used for analysis functions.
We need to create the function that will be passed on this that will enable emotions
to be recognized.

Create a new function, EmotionAnalysisAsync, that accepts a VideoFrame as a
parameter. The return type should be Task<CameraResult> and the function should
be marked as async.

The frame we get as a parameter is used to create a MemoryStream containing the
current frame. This will be in the JPG file format. We will find a face in this image,
and we want to ensure that we specify that we want emotion attributes using the
following code:

private async Task<CameraResult> EmotionAnalysisAsync (VideoFrame
frame) {
 MemoryStream jpg = frame.Image.ToMemoryStream(".jpg", s_
jpegParams);
 try {
 Face[] face = await _faceServiceClient.DetectAsync(jpg, true,
false, new List<FaceAttributeType>
 { FaceAttributeType.Emotion });
 EmotionScores emotions = face.First()?.FaceAttributes?.Emotion;

A successful call will result in an object containing all the emotion scores, as shown
in the following code. The scores are what we want to return:

 return new CameraResult {
 EmotionScores = emotions
 };

Analyzing Images to Recognize a Face

[82]

Catch any exceptions that may be thrown, returning null when they are.

We need to assign the Initialize function to the Func. We also need to add an
event handler each time we have a new result.

When a new result is obtained, we grab the EmotionScore that is received, as shown
in the following code. If it is null or does not contain any elements, then we do not
want to do anything else:

 _frameGrabber.NewResultAvailable += OnResultAvailable;
 _frameGrabber.AnalysisFunction = EmotionAnalysisAsync;
 private void OnResultAvailable(object sender,
FrameGrabber<CameraResult>.NewResultEventArgs e)
 {
 var analysisResult = e.Analysis.EmotionScores;
 if (analysisResult == null)
 return;

In the following code, we parse the emotion scores in AnalyseEmotions, which we
will look at in a bit:

 string emotion = AnalyseEmotions(analysisResult);

 Application.Current.Dispatcher.Invoke(() => {
 SystemResponse = $"You seem to be {emotion} today.";
 });
 }

Using the result from AnalyseEmotions, we print a string to the result to indicate the
current mood. This will need to be invoked from the current dispatcher, as the event
has been triggered in another thread.

To get the current mood in a readable format, we parse the emotion scores in
AnalyseEmotions as follows:

 private string AnalyseEmotions(Scores analysisResult) {
 string emotion = string.Empty;
 var sortedEmotions = analysisResult.ToRankedList();
 string currentEmotion = sortedEmotions.First().Key;

With the Scores we get, we call a ToRankedList function. This will return a list of
KeyValuePair, containing each emotion, along with the corresponding confidence.
The first one will be the most likely, the second will be the second most likely, and so
on. We only care about the most likely one, so we select it.

Chapter 2

[83]

With the top emotion score selected, we use a switch statement to find the correct
emotion. This is returned and printed to the result, as follows:

 switch(currentEmotion)
 {
 case "Anger":
 emotion = "angry";
 break;
 case "Contempt":
 emotion = "contempt";
 break;
 case "Disgust":
 emotion = "disgusted";
 break;
 case "Fear":
 emotion = "scared";
 break;
 case "Happiness":
 emotion = "happy";
 break;
 case "Neutral":
 default:
 emotion = "neutral";
 break;
 case "Sadness":
 emotion = "sad";
 break;
 case "Suprise":
 emotion = "suprised";
 break;
 }
 return emotion;
 }

The last piece of the puzzle is to make sure that the analysis is being executed at a
specified interval. In the StartCamera function, add the following line, just before
calling StartProcessingCamera:

 _frameGrabber.TriggerAnalysisOnInterval(TimeSpan.FromSeconds(5));

This will trigger an emotion analysis to be called every fifth second.

Analyzing Images to Recognize a Face

[84]

When I have a smile on my face, the application now knows that I am happy and
can provide further interaction accordingly. If we compile and run the example, we
should get results like those shown in the following screenshots:

Chapter 2

[85]

As my mood changes to neutral, the application detects this as well:

Automatically moderating user content
Using the content moderator API, we can add monitoring to user-generated content.
The API is created to assist with flags and to assess and filter offensive and unwanted
content.

Types of content moderation APIs
We will quickly go through the key features of the moderation APIs in this section.

A reference to the documentation for all APIs can be found at https://
docs.microsoft.com/nb-no/azure/cognitive-services/
content-moderator/api-reference.

https://docs.microsoft.com/nb-no/azure/cognitive-services/content-moderator/api-reference
https://docs.microsoft.com/nb-no/azure/cognitive-services/content-moderator/api-reference

Analyzing Images to Recognize a Face

[86]

Image moderation
The image moderation API allows you to moderate images for adult and
inappropriate content. It can also extract textual content and detect faces in images.

When using the API to evaluate inappropriate content, the API will take an image
as input. Based on the image, it will return a Boolean value, indicating whether the
image is appropriate or not. It will also contain a corresponding confidence score
between 0 and 1. The Boolean value is set based on a set of default thresholds.

If the image contains any text, the API will use OCR to extract the text. It will
then look for the same adult or racy content as text moderation, which we will
get to shortly.

Some content-based applications may not want to display any personally identifiable
information, in which case it can be wise to detect faces in images. Based on the
information retrieved in the face-detection evaluation, you can ensure that no user
content contains images of people.

Text moderation
Using the text moderation API, you can screen text against custom and shared lists
of text. It is able to detect personally identifiable information and profanity in text. In
this case, personally identifiable information is the presence of information such as
email addresses, phone numbers, and mailing addresses.

When you submit a text to be moderated, the API can detect the language used, if it
is not stated. Screening text will automatically correct any misspelled words (to catch
deliberately misspelled words). The results will contain the location of profanities
and personal identifiable information in the text, as well as the original text,
autocorrected text, and the language. Using these results, you can moderate
content appropriately.

Moderation tools
There are three ways to moderate content, enabled by the content moderator:

• Human moderation: Using teams and community to manually moderate
all content

• Automated moderation: Utilizing machine learning and AI to moderate at
scale with no human interaction

• Hybrid moderation: A combination of the preceding two, where people
typically occasionally do reviews

Chapter 2

[87]

The common scenario used is the last one. This is where machine learning is used to
automate the moderation process and teams of people can review the moderation.
Microsoft have created a review tool to ease this process. This allows you to see
through all the items for review in a web browser while using the APIs in your
application. We will look into this tool in the following section.

Using the review tool
To get started with the review tool, head over to https://contentmoderator.
cognitive.microsoft.com/. From here, you can sign in using your Microsoft
account. On your first sign-in, you will need to register by adding your name
to the account. You will then go on to create a review team, as shown in the
following screenshot:

You can do this by selecting the region and entering a team name. You can optionally
enter the email addresses of other people who should be part of the team. Click on
Create Team.

https://contentmoderator.cognitive.microsoft.com/
https://contentmoderator.cognitive.microsoft.com/
https://contentmoderator.cognitive.microsoft.com/
https://contentmoderator.cognitive.microsoft.com/

Analyzing Images to Recognize a Face

[88]

Once in, you will be presented with the following dashboard:

You will be presented with the total number of images and textual content that
are for review. You will also be presented with the total number of completed and
pending reviews. The dashboard also lists the users that have completed reviews,
as well as any tags used for content.

By selecting the Try option in the menu, you have the option to upload images or
text to execute moderation online. Do this by either uploading an image or entering
sample text in the textbox. Once done, you can select the Review option, where you
will be presented with the following screen:

If the given content is either adult content or racist, you can click on the a or r
buttons, respectively. For text, any profanities will be displayed. Once you are done
marking reviews, click on Next. This will go through a process of moderating the
given content.

Chapter 2

[89]

Other tools
Apart from the APIs and the review tool, there are two other tools you can use,
as follows:

• List manager API: Using custom lists of images and text to moderate
pre-identified content that you don't wish to scan for repeatedly

• Workflow API: Using this API, you can define conditional logic and
actions to specify the policies used by your specific content

To use any of these APIs, or to use the moderator APIs, you can make calls to specific
REST APIs. To do so, you will need to use an API key and a base URL. These settings
can be found under Settings | Credentials on the review tool website, as shown in
the following screenshot:

Analyzing Images to Recognize a Face

[90]

Building your own image classifiers
The Custom Vision service allows you to build your own image classifiers. There
might be cases where you require special images to use the image APIs. Such cases
may be from a factory, where the equipment you need to recognize is not very
available. You can start to build a prototype, using as little as 50 images.

To get started with the Custom Vision service, head over to https://
customvision.ai/ and log on using your Microsoft account.

Building a classifier
To build a classifier, you will need to create a new project. Doing so will allow you
to specify what category the images will be in. You will also select the classification
type and project type.

Moving on, you will need to upload images. This can be done through the web
page or through a REST API. All images must be tagged so that the classifier will
recognize similar images later.

Once all images (at least 50) are uploaded, you must train your model. Once the
training is complete, you will be presented with a precision percentage per tag.
This is a measurement of the accuracy of the model.

Improving the model
On the website, you can test your models. Doing so will allow you to upload images,
which will be classified by the model. If it turns out that the model performs poorly,
you can improve the model.

Improving the model involves uploading more images. Some general guidelines to
improve the model are as follows:

• Have enough images
• Make sure that the balance between tags is good (so that there is an equal

number of images per tag)
• Use a diverse set of images for training
• Use images that have been used for prediction
• Inspect the predictions

https://customvision.ai/
https://customvision.ai/
https://customvision.ai/

Chapter 2

[91]

Using the trained model
Once you are happy with the model, you can use it for predictions. The model can be
used in one of the two following ways:

• With a REST API
• Export it to a model file

The first choice involves uploading an image. Calling the generated endpoint for
your model, along with the image data, will result in a prediction. The result will
contain the predicted tags, ordered by their probability.

The second choice allows you to run the prediction offline. This means that you can
utilize different frameworks, such as TensorFlow, CoreML, and ONNX, for different
platforms. How to use the model with these frameworks is beyond the scope of this
book. The downside of using an offline model is that the accuracy may suffer a bit
compared to the online version.

Summary
In this chapter, we took a deep dive into a big part of the vision APIs. You first
learned how to get good descriptions of images. Next, you learned how to recognize
celebrities and text in images, and you learned how to generate thumbnails.
Following this, we moved on to the Face API, where we got more information about
detected faces. We found out how to verify whether two faces were the same. After
this, you learned how to find similar faces and group similar faces. Then we added
identification to our smart-house application, allowing it to know who we are. We
also added the ability to recognize emotions in faces. We took a quick look into the
content moderator to see how you can add automatic moderation to user-generated
content. Finally, we briefly looked at the Custom Vision service, and how you can
use it to generate specific prediction models.

The next chapter will continue with the final vision API. We will focus on videos,
learning what the video indexer API has to offer.

[93]

Analyzing Videos
In the previous chapter, we looked at different APIs for processing images. We are
going to cover one new API: the Video Indexer API.

In this chapter, we will cover the following topics:

• General overview of Video Indexer
• Guide to Video Indexer using the prebuilt UI

Diving into Video Indexer
Video Indexer is a service that allows you to upload videos and gain insights from
the videos that you upload. These insights can be used to make videos (and by
extension your content) more discoverable. They can also be used to improve
user engagement.

General overview
Using artificial intelligence technologies, Video Indexer enables you to extract a great
deal of information. It can gain insights from the following list of features:

• Audio transcript, with language detection
• Creation of closed captions
• Noise reduction
• Face tracking and identification
• Speaker indexing
• Visual-text recognition
• Voice-activity detection
• Scene detection

Analyzing Videos

[94]

• Keyframe extraction
• Sentiment analysis
• Translation
• Visual-content moderation
• Keyword extraction
• Annotations
• Detection of brands
• Object and action labeling
• Textual-content moderation
• Emotion detection

Typical scenarios
The following list shows a few typical scenarios where one might want to use
Video Indexer:

• Search: If you have a library of videos, you can use the insights gained from
Video Indexer to index each video. Indexing by (for example) spoken word
or where two specific people are seen together can provide a much better
search experience for users.

• Monetization: The value of each video can be improved by using the insights
gained from Video Indexer. For example, you can deliver more relevant ads
by using the video insights to present ads that are contextually correct. For
instance, by using the insights, you can display ads for sports shoes in the
middle of a football match instead of a swimming competition.

• User engagement: By using the insights gained from Video Indexer, you
can improve user engagement by displaying relevant elements of the
video. If you have a video covering different material for 60 minutes,
placing video moments over that time allows the user to jump straight
to the relevant section.

Key concepts
The following sections describe the key concepts that are important to understand
when discussing Video Indexer.

Chapter 3

[95]

Breakdowns
A breakdown is a complete list containing all details of all the insights. This is where
a full video transcript comes from; however, breakdowns are mostly too detailed
for users. Instead, you typically want to use summarized insights to obtain only the
most relevant knowledge. If more detailed insights is required, you would go from
the summarized insights to the full breakdowns.

Summarized insights
Instead of going through several thousand time ranges and checking for given
data, one can use summarized insights. This will provide you with an aggregated
view of the data, such as faces, keywords, and sentiments, and the time ranges they
appear in.

Keywords
From any transcribed audio in the video, Video Indexer will extract a list of
keywords and topics that may be relevant to the video.

Sentiments
When a video is transcribed, it is also analyzed for sentiment. This means that you
can gauge whether or not the video is more positive or negative.

Blocks
Blocks are used to move through the data in an easy way. If there are changes to
speakers or long pauses between audio, these might be indexed as separate blocks.

Unlocking video insights using Video
Indexer
In this section, we will look at how to use Video Indexer.

Analyzing Videos

[96]

How to use Video Indexer
We are going to take a quick look at how you can utilize Video Indexer.

Through a web portal
To use the prebuilt Video Indexer tool from Microsoft, head over to
https://vi.microsoft.com/. Sign up or log in with your Microsoft account.
When you have signed in, you will be asked to register the account by filling out
some information, as shown in the following screenshot:

Once you have logged in, you will find yourself at a dashboard, as shown in the
following screenshot:

https://vi.microsoft.com/
https://vi.microsoft.com/

Chapter 3

[97]

To get started, you can upload your videos by clicking on Upload. This will open
a popup that you can use to either upload a video or enter a URL to a video.
Alternatively, you can get started quickly by selecting a sample video by clicking
on Sample Videos in the menu.

When you have chosen a video, or when the video you have uploaded has
completed its indexing, you will be taken to a page to see the insights. This page
will show you the video in full, along with any insights that are found, as shown in
the following screenshot:

Analyzing Videos

[98]

In addition to the keywords and people that were discovered in the video, you will
get a list of annotations and sentiments of the speech throughout the video. These
insights will give the following list of information (if such information is detected):

• People appearing in the video
• Keywords about the video content
• Labels related to the video
• Brands detected
• Emotions
• List of keyframes

Video Indexer will also create a timeline of every key event throughout the video.
You can follow along with this timeline by selecting Timeline at the top of the
Insights frame, as shown in the following screenshot:

This timeline will automatically move forward as the video moves forward.

The timeline will display the transcript of any audio in the video. In addition,
it will show any objects that were detected and any people recognized.

Video Indexer API
Apart from the premade Video Indexer site, there is also a Video Indexer API
present. This allows you to gain the exact same insights as the web tool from your
own application.

To get started with the API, head over to https://api-portal.videoindexer.ai/.
Once here, log in with your Microsoft account. The first step is to subscribe to the
API product. You can do this by clicking on the Products tab. This will present you
with the following:

https://api-portal.videoindexer.ai/

Chapter 3

[99]

By clicking on Authorization, you will be taken to another page, as shown in the
following screenshot:

Analyzing Videos

[100]

Click on Add subscription. This will display the following:

Fill in a Subscription name and make sure you read and agree to the terms of use.
Click Confirm.

Once you have subscribed to the product, you will be taken to a page to see the API
keys, as shown in the following screenshot. This can always be reached by going to
the Products tab and selecting the product you have subscribed to:

Chapter 3

[101]

Once you have the key, select the APIs tab and select your subscribed product. This
will present all the API calls that are available for you to use. The entire API is REST-
based and, as such, you are able to use it from any application as long as you provide
the correct request parameters and API keys.

Summary
In this chapter, we covered Video Indexer. We started with a general overview,
learning what Video Indexer is. We then learned how to analyze videos in the Video
Indexer web application. We ended the chapter by looking at how to sign up for the
REST API, allowing us to utilize the power of Video Indexer in our own applications.

In the next chapter, we will move away from the vision APIs and into the first
language API. You will learn how to configure the API to understand intent in
sentences, using the power of LUIS.

[103]

Letting Applications
Understand Commands

"LUIS saved us tremendous time while going from a prototype to production."

 - Eyal Yavor, Cofounder and CTO of Meekan

Throughout the previous chapters, we have focused on vision APIs. Starting with
this chapter, we will move on to language APIs, where we will start with the
Language Understanding Intelligent Service (LUIS). Throughout this chapter,
you will learn how to create and maintain language-understanding models.

By the end of this chapter, we will have covered the following topics:

• Creating language-understanding models
• Handling common requests using prebuilt models from Bing and Cortana

Creating language-understanding models
Sometimes, we might wish that our computer could understand what we want. As
we go on with our day-to-day business, we want to be able to talk to our computer,
or mobile phone, using regular sentences. This is hard to do without any extra help.

Utilizing the power of LUIS, we can now solve this problem. By creating
language-understanding models, we can allow applications to understand what
users want. We can also recognize key data, which is, typically, data that you want
to be part of a query or command. If you are asking for the latest news on a certain
issue, then the key data would be the topic of the news that you are asking for.

Letting Applications Understand Commands

[104]

Creating an application
To get started with LUIS, you should head over to https://www.luis.ai. This
is where we will set up our application. Click on the Sign in or create an account
button to get started.

Let's create our first application. Click on My Apps from the top menu. This should
take you back to the application list, which should be empty. Click on New App.

In the form that is shown, we fill in the given information about our application.
We are required to give the application a name. We also need to indicate an atypical
usage scenario, which will be set by default to Other (please specify). Instead, set
this to SmartHouseApplication. This application falls under the Tools domain.
We will choose an English Application Culture.

The other languages that are available are Brazilian, Portuguese, Chinese, French,
German, Italian, Japanese, and Spanish.

The following screenshot shows how we can define the application:

When you click on the Create button, the application will be created. This process
will take about a minute or so to complete, so just be patient.

https://www.luis.ai/

Chapter 4

[105]

When the application has been created, you will be taken to the application's home
base, as shown in the following screenshot:

As you can see, we have a variety of features to use, and we will cover the important
ones here.

The application we will build will be aimed at our smart house application. We will
configure the application to recognize commands to set the temperature in different
rooms. In addition, we would like it to tell us what the temperatures in the different
rooms are.

Recognizing key data using entities
One of the key features of LUIS is the ability to recognize key data in sentences. The
instances of this key data are known as entities. In a news application, an example of
an entity would be the topic. If we ask to get the latest news, we could specify a topic
for the service to recognize.

For our application, we want to add an entity for our rooms. We do this by selecting
Entities in the left-hand pane. Then we click on Add custom entity.

Letting Applications Understand Commands

[106]

We will be presented with the following screen:

Enter the name of the entity and click on the Save button. That's it—you have now
created the first entity. We will see how to use this in a bit.

As you may have noticed, there is a drop-down list called Entity type in the entity
creation form. Entity types are a way to create hierarchical entities, which is basically
about defining relationships between entities.

As an example, you can imagine searching for news inside a given time frame.
The generic top-level entity is Date. Going from there, you can define two children,
StartDate and EndDate. These will be recognized by the service, where models
will be built for the entity and its children.

To add a hierarchical child entity, check the checkbox and select Hierarchical from
the selection. Click on the + button next to Entity Children for each child you want
to add, as shown in the following screenshot. Enter the name of the child:

Chapter 4

[107]

The other types of entities you can add are called composite entities. This is a type
of entity that is formed by a set of existing entities. This is what we would call a has-a
relationship, so the components are children, but not in a parent-child relationship.

Composite entities do not share common traits as hierarchical entities do. When
deleting the top-level entity, you do not delete components. Using composite entities,
LUIS can identify groups of entities, which are then treated as a single entity.

Using composite entities is like ordering a pizza. You can order a pizza by stating
I want a large pizza with mushrooms and pepperoni. In this example, we can see the size
as an entity, and we can also see the two toppings as entities. Combining these could
make a composite entity, which is called an order.

The last type of entity you can add is called a list entity. This is a customized list of
entity values to be used as keywords or identifiers within utterances.

When using entities, there may be times where an entity consists of several words.
In our case, with the Rooms entity, we may ask for the living room. To be able to
identify such phrasings, we can define a feature list. This is a comma-separated list
that can contain some or all of the expected phrases.

Let's add one for our application. On the left-hand side, at the bottom of the pane,
you will see Features. Select this and click on Add phrase list to create a new list.
Call it Rooms and add the different rooms that you would expect to find in a house,
as shown in the following screenshot:

Letting Applications Understand Commands

[108]

By clicking on Recommend on the right-hand side, LUIS will recommend more
values related to the ones you have already entered.

We will see how this is utilized later.

In addition to creating phrase lists, we can create pattern features. The typical use
case of using pattern features is when you have data that matches patterns but it is
not feasible to enter them as a phrase list. Pattern features are typically used with
product numbers.

Understanding what the user wants using
intents
Now that we have defined an entity, it is time to see how it fits in with intents.
An intent is basically the purpose of a sentence.

We can add intents to our application by selecting the Intents option in the
left-hand pane. Click on Add intent. When we add an intent, we give it a name.
The name should be descriptive of what the intent is. We want to add an intent
named GetRoomTemperature, where the goal is to get the temperature of a given
room, as shown in the following screenshot:

When you click on the Save button, you will be taken to the utterance page. Here,
we can add sentences that we can use for the intent, so let's add one. Enter what is
the temperature in the kitchen? and press Enter. The sentence (or utterance,
as it is called) will be ready for labeling. Labeling an utterance means that we define
what intent it belongs to. We should also make sure that we mark entities with the
correct type.

Chapter 4

[109]

The following screenshot shows the labeling process for our first utterance:

As you can see, the entity is marked. You can tell LUIS that a word is a given entity
by clicking on the word. This will pop up a menu containing all the available entities,
and you can then select the correct one. Also, note how the GetRoomTemperature
intent is selected in the drop-down list. Click Train once you are done labeling
your utterances.

All applications are created with a default intent called None. This intent will
encompass sentences that do not belong to our application at all. If we were to say
Order a large pizza with mushrooms and pepperoni, this would end up with None as
the intent.

When you are creating intents, you should define at least three to five utterances.
This will give LUIS something to work with, and, as such, it can create better
models. We will see how we can improve performance later in this chapter.

Simplifying development using prebuilt
models
Building entities and intents can be easy or it can be intricate. Fortunately, LUIS
provides a set of prebuilt entities that stem from Bing. These entities will be included
in the applications, as well as on the web, while going through the labeling process.

Letting Applications Understand Commands

[110]

The following table describes all the available prebuilt entities:

Entity Example
builtin.number Five, 23.21
builtin.ordinal Second, 3rd
builtin.temperature 2 degrees Celsius, 104 F
builtin.dimension 231 square kilometers
builtin.age 27 years old
builtin.geography City, country, point of interest

builtin.encyclopedia Person, organization, event, TV episode, product, film, and
so on

builtin.datetime Date, time, duration, set

The last three have several subentities, as described in the Example column of
the table.

We are going to add one of these prebuilt entities, so select Entities in the menu.
Click on Add prebuilt entity, select temperature from the list, and click on Save.

With the newly created entity, we want to add a new intent called SetTemperature.
If the example utterance is Set the temperature in the kitchen to 22 degrees Celsius, we
can label the utterance as shown in the following screenshot:

As you can see, we have a room entity. We also have the prebuilt temperature entity
clearly labeled. As the correct intent should be selected in the drop-down menu, we
can click on the Train button to save the utterance.

Chapter 4

[111]

Prebuilt domains
In addition to using prebuilt entities, we can use prebuilt domains. These are entities
and intents that already exist, leveraging commonly used intents and entities from
different domains. By using these intents and entities, you can use models that you
would typically use in Windows. A very basic example is setting up appointments
in the calendar.

To use Cortana's prebuilt domain, you can select Prebuilt domains from the
left-hand menu. This will open a list of available domains. By clicking Add domain,
you can add the selected domain, as shown in the following screenshot:

Letting Applications Understand Commands

[112]

This will add the intents and entities for that specific domain to the list of intents and
entities that is already defined, as shown in the following screenshot:

The following list shows the top-level domains that are available with Cortana's
prebuilt domains. For a complete list of the available prebuilt domains, please refer
to Appendix A, LUIS Entities:

• Calendar

• Camera

• Communication

• Entertainment

• Events

• Fitness

• Gaming

• HomeAutomation

Chapter 4

[113]

• MovieTickets

• Music

• Note

• OnDevice

• Places

• Reminder

• RestaurantReservation

• Taxi

• Translate

• Utilities

• Weather

• Web

Training a model
Now that we have a working model, it is time to put it into action.

Training and publishing the model
The first step to using the model is to make sure that the model has some utterances
to work with. Until now, we have added one utterance per intent. Before we deploy
the application, we need more.

Think of three to four different ways to set or get the room temperature and add
them, specifying the entities and intents. Also, add a couple of utterances that fall
into the None intent, just for reference.

When we have added some new utterances, we need to train the model. Doing so
will make LUIS develop code to recognize the relevant entities and intents in the
future. This process is done periodically; however, it is wise to do it whenever you
have made changes, before publication. This can be done by clicking Train in the
top menu.

Letting Applications Understand Commands

[114]

To test the application, you can simply enter test sentences in the Interactive Testing
tab. This will show you how any given sentence is labeled, and what intents the
service has discovered, as shown in the following screenshot:

With the training completed, we can publish the application. This will deploy the
models to an HTTP endpoint, which will interpret the sentences that we send to it.

Select Publish from the left-hand menu. This will present you with the
following screen:

Chapter 4

[115]

Click on the Publish button to deploy the application. The URL beneath the
Endpoint url settings field is the endpoint where the model is deployed. As
you can see, it specifies the application ID, as well as the subscription key.

Before we go any further, we can verify that the endpoint actually works. You
can do this by entering a query into the text field (for instance, get the bedroom
temperature) and clicking on the link. This should present you with something
similar to the following screenshot:

Letting Applications Understand Commands

[116]

When the model has been published, we can move on to access it through the code.

Connecting to the smart house application
To be able to easily work with LUIS, we will want to add the NuGet client package.
In the smart house application, go to the NuGet package manager and find the
Microsoft.Cognitive.LUIS package. Install this into the project.

We will need to add a new class called Luis. Place the file under the Model folder.
This class will be in charge of calling the endpoint and processing the result.

As we will need to test this class, we will need to add a View and a ViewModel.
Add the file LuisView.xaml to the View folder, and add LuisViewModel.cs
to the ViewModel folder.

The View should be rather simple. It should contain two TextBox elements,
one for inputting requests and the other for displaying results. We also need
a button to execute commands.

Add the View as a TabItem in the MainView.xaml file.

The ViewModel should have two string properties, one for each of the TextBox
elements. It will also need an ICommand property for the button command.

We will create the Luis class first, so open the Luis.cs file. Make the class public.

When we have made requests and received the corresponding result, we want to
trigger an event to notify the UI. We want some additional arguments with this
event, so, below the Luis class, create a LuisUtteranceResultEventArgs class
that inherits from the EventArgs class, as follows:

 public class LuisUtteranceResultEventArgs : EventArgs {
 public string Status { get; set; }
 public string Message { get; set; }
 public bool RequiresReply { get; set; }
 }

This will contain a Status string, a Message status, and the Result itself. Go back to
the Luis class and add an event and a private member, as follows:

 public event EventHandler<LuisUtteranceResultEventArgs>
OnLuisUtteranceResultUpdated;

 private LuisClient _luisClient;

Chapter 4

[117]

We have already discussed the event. The private member is the API access object,
which we installed from NuGet:

 public Luis(LuisClientluisClient) {
 _luisClient = luisClient;
 }

The constructor should accept the LuisClient object as a parameter and assign it
to the member we previously created.

Let's create a helper method to raise the OnLuisUtteranceResultUpdated event,
as follows:

private void RaiseOnLuisUtteranceResultUpdated(
LuisUtteranceResultEventArgsargs)
{
 OnLuisUtteranceResultUpdated?.Invoke(this, args);
}

This is purely for our own convenience.

To be able to make requests, we will create a function called RequestAsync. This
will accept a string as a parameter and have Task as the return type. The function
should be marked as async, as follows:

 public async Task RequestAsync(string input) {
 try {
 LuisResult result = await _luisClient.Predict(input);

Inside the function, we make a call to the Predict function of _luisClient. This
will send a query to the endpoint we published earlier. A successful request will
result in a LuisResult object that contains some data, which we will explore shortly.

We use the result in a new function, where we process it. We make sure that we
catch any exceptions and notify any listeners about it using the following code:

 ProcessResult(result);
 }
 catch(Exception ex) {
 RaiseOnLuisUtteranceResultUpdated(new
LuisUtteranceResultEventArgs
 {
 Status = "Failed",
 Message = ex.Message
 });
 }
 }

Letting Applications Understand Commands

[118]

In the ProcessResult function, we create a new object of the
LuisUtteranceResultEventArgs type. This will be used when notifying listeners
of any results. In this argument object, we add the Succeeded status and the result
object. We also write out a message, stating the top identified intent. We also add the
likelihood of this intent being the top one out of all the intents we have. Finally, we
also add the number of intents identified:

 private void ProcessResult(LuisResult result) {
 LuisUtteranceResultEventArgsargs = new
LuisUtteranceResultEventArgs();

 args.Result = result;
 args.Status = "Succeeded";
 args.Message = $"Top intent is {result.TopScoringIntent.Name}
with score {result.TopScoringIntent.Score}. Found {result.Entities.
Count} entities.";

 RaiseOnLuisUtteranceResultUpdated(args);
 }

With that in place, we head to our view model. Open the LuisViewModel.cs file.
Make sure that the class is public and that it inherits from the ObservableObject
class.

Declare a private member, as follows:
 private Luis _luis;

This will hold the Luis object we created earlier:
 public LuisViewModel() {
 _luis = new Luis(new LuisClient("APP_ID_HERE", "API_KEY_
HERE"));

Our constructor creates the Luis object, making sure it is initialized with a new
LuisClient. As you may have noticed, this requires two parameters, the application
ID and the subscription ID. There is also a third parameter, preview, but we will
not need to set it at this time.

The application ID can be found either by looking at the URL in the publishing step
or by going to Settings on the application's site at https://www.luis.ai. There,
you will find the Application ID, as shown in the following screenshot:

https://www.luis.ai/
https://www.luis.ai

Chapter 4

[119]

With the Luis object created, we complete the constructor as follows:

 _luis.OnLuisUtteranceResultUpdated +=
OnLuisUtteranceResultUpdated;
 ExecuteUtteranceCommand = new DelegateCommand(ExecuteUtterance,
CanExecuteUtterance);
}

This will hook up the OnLuisUtteranceResultUpdated event and create a new
DelegateCommand event for our button. For our command to be able to run,
we need to check that we have written some text in the input field. This is done
using CanExecuteUtterance.

The ExecuteUtterance command is itself rather simple, as shown in the
following code:

 private async void ExecuteUtterance(object obj) {
 await _luis.RequestAsync(InputText);
 }

All we do is make a call to the RequestAsync function in the _luis object. We do not
need to wait for any results, as these will be coming from the event.

The event handler, OnLuisUtteranceResultUpdated, will format the results and
print them to the screen.

First, we make sure that we invoke the methods in the current dispatcher thread.
This is done as the event is triggered in another thread. We create a StringBuilder,
which will be used to concatenate all the results, as shown in the following code:

private void OnLuisUtteranceResultUpdated(object sender,
LuisUtteranceResultEventArgs e) {
 Application.Current.Dispatcher.Invoke(() => {
 StringBuilder sb = new StringBuilder();

First, we append the Status and the Message status. We then check to see if we have
any entities that were detected and append the number of entities, as follows:

 sb.AppendFormat("Status: {0}\n", e.Status);
 sb.AppendFormat("Summary: {0}\n\n", e.Message);

 if(e.Result.Entities != null&&e.Result.Entities.Count != 0) {
 sb.AppendFormat("Entities found: {0}\n", e.Result.Entities.
Count);
 sb.Append("Entities:\n");

Letting Applications Understand Commands

[120]

If we do have any entities, we loop through each of them, printing out the entity
name and the value:

 foreach(var entities in e.Result.Entities) {
 foreach(var entity in entities.Value) {
 sb.AppendFormat("Name: {0}\tValue: {1}\n",
 entity.Name, entity.Value);
 }
 }
 sb.Append("\n");
 }

Finally, we add StringBuilder to our ResultText string, which should display it
on screen, as follows:

 ResultText = sb.ToString();
 });
 }

With everything having compiled, the result should look something like the
following screenshot:

Chapter 4

[121]

Model improvement through active usage
LUIS is a machine learning service. The applications we create, and the models that
are generated, can therefore improve based on use. Throughout the development,
it is a good idea to keep an eye on the performance. You may notice some intents
that are often mislabeled, or entities that are hard to recognize.

Visualizing performance
On the LUIS website, the dashboard displays information about intent and entity
breakdowns. This is basically information on how the intents and entities are
distributed across the utterances that have been used.

The following diagram shows what the intent breakdown display looks like:

Letting Applications Understand Commands

[122]

The following diagram shows what the entity breakdown looks like:

By hovering the mouse over the different bars (or sectors of the pie chart), the name
of the intent/entity will be displayed. In addition, the percentage number of the total
number of intents/entities in use is displayed.

Resolving performance problems
If you notice an error in your applications, there are typically four options to
resolve it:

• Adding model features
• Adding labeled utterances
• Looking for incorrect utterance labels
• Changing the schema

We will now look briefly at each of these.

Chapter 4

[123]

Adding model features
Adding model features is typically something we can do if we have phrases that
should be detected as entities, but are not. We have already seen an example of
this with the room entity, where one room could be the living room.

The solution is, of course, to add phrase lists or regex features. There are three
scenarios where this will likely help:

• When LUIS fails to see words or phrases that are similar.
• When LUIS has trouble identifying entities. Adding all possible entity values

in a phrase list should help.
• When rare or proprietary words are used.

Adding labeled utterances
Adding and labeling more utterances will always improve performance. This will
most likely help in the following scenarios:

• When LUIS fails to differentiate between two intents
• When LUIS fails to detect entities between surrounding words
• If LUIS systematically assigns low scores to an intent

Looking for incorrect utterance labels
A common mistake is mislabeling an utterance or entity. In such cases, you will need
to find the incorrect utterance and correct it. This will likely resolve problems in the
following scenarios:

• If LUIS fails to differentiate between two intents, even when similar
utterances have been labeled

• If LUIS consistently misses an entity

Changing the schema
If all the preceding solutions fail and you still have problems with the model, you
may consider changing the schema, meaning combining, regrouping, and/or
dropping intents and entities.

Keep in mind that if it is hard for humans to label an utterance, it is even harder
for a machine.

Letting Applications Understand Commands

[124]

Active learning
A very nice feature of LUIS is the power of active learning. When we are using the
service actively, it will log all queries, and, as such, we will then be able to analyze
usage. Doing so allows us to quickly correct errors and label utterances we have not
seen before.

Using the application we have built—the smart house application—if we run
a query with the utterance can you tell me the bedroom temperature?,
the model will likely not recognize this. If we debug the process, stepping through
the ProcessResult function, we will see the following values returned:

As you can see from the preceding screenshot, the top-scoring intent is None, with a
score of 0.61. In addition, no entities have been recognized, so this is not good.

Head back to the LUIS website. Move to the Review endpoint utterances page,
which can be found in the left-hand menu. Here, we can see that the utterance
we just tried has been added. We can now label the intent and entity correctly,
as shown in the following screenshot:

Chapter 4

[125]

By labeling the utterance with the correct intent and entity, we will get a correct
result the next time we query in this way, as you can see in the following screenshot:

Summary
In this chapter, we created a LUIS application. You learned how to create
language-understanding models, which can recognize entities in sentences. You
learned how to understand the user's intent and how we can trigger actions from
this. An important step was to see how to improve the model in various ways.

In the next chapter, we will utilize what you have learned here, using LUIS with
speech APIs, giving us the ability to speak to our application.

[127]

Speaking with
Your Application

In the previous chapter, we learned how to discover and understand the intent of a
user, based on utterances. In this chapter, we will learn how to add audio capabilities
to our applications, convert text to speech and speech to text, and learn how to
identify the person speaking. Throughout this chapter, we will learn how you can
utilize spoken audio to verify a person. Finally, we will briefly touch on how to
customize speech recognition to make it unique for your application's usage.

By the end of this chapter, we will have covered the following topics:

• Converting spoken audio to text and text to spoken audio
• Recognizing intent from spoken audio by utilizing LUIS
• Verifying that the speaker is who they claim to be
• Identifying the speaker
• Tailoring the Speaker Recognition API to recognize custom speaking styles

and environments

Converting text to audio and vice versa
In Chapter 1, Getting Started with Azure Cognitive Services, we utilized a part of the
Bing Speech API. We gave the example application the ability to say sentences to
us. We will use the code that we created in that example now, but we will dive a bit
deeper into the details.

Speaking with Your Application

[128]

We will also go through the other feature of Bing Speech API, that is, converting
spoken audio to text. The idea is that we can speak to the smart-house application,
which will recognize what we are saying. Using the textual output, the application
will use LUIS to gather the intent of our sentence. If LUIS needs more information,
the application will politely ask us for more via audio.

To get started, we want to modify the build definition of the smart-house application.
We need to specify whether we are running it on a 32-bit or 64-bit OS. To utilize
speech-to-text conversion, we want to install the Bing Speech NuGet client package.
Search for Microsoft.ProjectOxford.SpeechRecognition and install either the
32-bit version or the 64-bit version, depending on your system.

Further on, we need to add references to System.Runtime.Serialization and
System.Web. These are needed so that we are able to make web requests and
deserialize response data from the APIs.

Speaking to the application
Add a new file to the Model folder, called SpeechToText.cs. Beneath the
automatically created SpeechToText class, we want to add an enum type variable
called SttStatus. It should have two values, Success and Error.

In addition, we want to define an EventArgs class for events that we will raise
during execution. Add the following class at the bottom of the file:

 public class SpeechToTextEventArgs : EventArgs
 {
 public SttStatus Status { get; private set; }
 public string Message { get; private set; }
 public List<string> Results { get; private set; }

 public SpeechToTextEventArgs(SttStatus status,
 string message, List<string> results = null)
 {
 Status = status;
 Message = message;
 Results = results;
 }
 }

As you can see, the event argument will hold the operation status, a message of any
kind, and a list of strings. This will be a list with potential speech-to-text conversions.

Chapter 5

[129]

The SpeechToText class needs to implement IDisposable. This is done so that
we can clean up the resources used for recording spoken audio and shut down the
application properly. We will add the details presently, so for now, just make sure to
add the Dispose function.

Now, we need to define a few private members in the class, as well as an event:

 public event EventHandler<SpeechToTextEventArgs>
OnSttStatusUpdated;

 private DataRecognitionClient _dataRecClient;
 private MicrophoneRecognitionClient _micRecClient;
 private SpeechRecognitionMode _speechMode = SpeechRecognitionMode.
ShortPhrase;

 private string _language = "en-US";
 private bool _isMicRecording = false;

The OnSttStatusUpdated event will be triggered whenever we have a new
operation status. DataRecognitionClient and MicrophoneRecognitionClient are
the two objects that we can use to call the Bing Speech API. We will look at how they
are created presently.

We define SpeechRecognitionMode as ShortPhrase. This means that we do
not expect any spoken sentences longer than 15 seconds. The alternative is
LongDictation, which means that we can convert spoken sentences to be up
to 2 minutes long.

Finally, we specify the language to be English, and define a bool type variable,
which indicates whether or not we are currently recording anything.

In our constructor, we accept the Bing Speech API key as a parameter. We will use
this in the creation of our API clients:

 public SpeechToText(string bingApiKey)
 {
 _dataRecClient = SpeechRecognitionServiceFactory.
CreateDataClientWithIntentUsingEndpointUrl(_language, bingApiKey,
"LUIS_ROOT_URI");

 _micRecClient = SpeechRecognitionServiceFactory.
CreateMicrophoneClient(_speechMode, _language, bingApiKey);

 Initialize();
 }

Speaking with Your Application

[130]

As you can see, we create both _dataRecClient and _micRecClient by calling
SpeechRecognitionServiceFactory. For the first client, we state that we want to
use intent recognition as well. The parameters required are the language, Bing API
key, the LUIS app ID, and the LUIS API key. By using a DataRecognitionClient
object, we can upload audio files with speech.

By using MicrophoneRecognitionClient, we can use a microphone for
real-time conversion. For this, we do not want intent detection, so we call
CreateMicrophoneClient. In this case, we only need to specify the speech mode,
the language, and the Bing Speech API key.

Before leaving the constructor, we call the Initialize function. In this, we subscribe
to certain events on each of the clients:

 private void Initialize()
 {
 _micRecClient.OnMicrophoneStatus += OnMicrophoneStatus;
 _micRecClient.OnPartialResponseReceived +=
OnPartialResponseReceived;
 _micRecClient.OnResponseReceived += OnResponseReceived;
 _micRecClient.OnConversationError +=
OnConversationErrorReceived;

 _dataRecClient.OnIntent += OnIntentReceived;
 _dataRecClient.OnPartialResponseReceived +=
 OnPartialResponseReceived;
 _dataRecClient.OnConversationError +=
OnConversationErrorReceived;
 _dataRecClient.OnResponseReceived += OnResponseReceived;
 }

As you can see, there are quite a few similarities between the two clients.
The two differences are that _dataRecClient will get intents through the
OnIntent event, and _micRecClient will get the microphone status through
the OnMicrophoneStatus event.

We do not really care about partial responses. However, they may be useful in
some cases, as they will continuously give the currently completed conversion:

 private void OnPartialResponseReceived(object sender,
PartialSpeechResponseEventArgs e)
 {
 Debug.WriteLine($"Partial response received:{e.
PartialResult}");
 }

Chapter 5

[131]

For our application, we will choose to output it to the debug console window. In this
case, PartialResult is a string with the partially converted text:

private void OnMicrophoneStatus(object sender, MicrophoneEventArgs e)
{
 Debug.WriteLine($"Microphone status changed to recording:
{e.Recording}");
}

We do not care about the current microphone status, either. Again, we output the
status to the debug console window.

Before moving on, add a helper function, called RaiseSttStatusUpdated. This
should raise OnSttStatusUpdated when called.

When we are calling _dataRecClient, we may recognize intents from LUIS. In these
cases, we want to raise an event, where we output the recognized intent. This is done
with the following code:

private void OnIntentReceived(object sender, SpeechIntentEventArgs e)
{
 SpeechToTextEventArgs args = new SpeechToTextEventArgs(SttStatus.
Success, $"Intent received: {e.Intent.ToString()}.\n Payload:
{e.Payload}");
 RaiseSttStatusUpdated(args);
}

We choose to print out intent information and the Payload. This is a string
containing recognized entities, intents, and actions that are triggered from LUIS.

If any errors occur during the conversion, there are several things we will want to
do. First and foremost, we want to stop any microphone recordings that may be
running. There is really no point in trying to convert more in the current operation
if it has failed:

 private void OnConversationErrorReceived(object sender,
SpeechErrorEventArgs e)
 {
 if (_isMicRecording) StopMicRecording();

We will create StopMicRecording presently.

In addition, we want to notify any subscribers that the conversion failed. In such
cases, we want to give details about error codes and error messages:

 string message = $"Speech to text failed with status code:{e.
SpeechErrorCode.ToString()}, and error message: {e.SpeechErrorText}";

Speaking with Your Application

[132]

 SpeechToTextEventArgs args = new
SpeechToTextEventArgs(SttStatus.Error, message);

 RaiseSttStatusUpdated(args);
 }

The OnConversationError event does, fortunately, provide us with detailed
information about any errors.

Now, let's look at the StopMicRecording method:

 private void StopMicRecording()
 {
 _micRecClient.EndMicAndRecognition();
 _isMicRecording = false;
 }

This is a simple function that calls EndMicAndRecognition on the _micRecClient
MicrophoneRecognitionClient object. When this is called, we stop the client
from recording.

The final event handler that we need to create is the OnResponseReceived handler.
This will be triggered whenever we receive a complete, converted response from
the service.

Again, we want to make sure we do not record any more if we are currently
recording:

 private void OnResponseReceived(object sender,
SpeechResponseEventArgs e)
 {
 if (_isMicRecording) StopMicRecording();

The SpeechResponseEventArgs argument contains a PhraseResponse object. This
contains an array of RecognizedPhrase, which we want to access. Each item in this
array contains the confidence of correct conversion. It also contains the converted
phrases as DisplayText. This uses inverse text normalization, proper capitalization,
and punctuation, and it masks profanities with asterisks:

 RecognizedPhrase[] recognizedPhrases = e.PhraseResponse.Results;
 List<string> phrasesToDisplay = new List<string>();

 foreach(RecognizedPhrase phrase in recognizedPhrases)
 {
 phrasesToDisplay.Add(phrase.DisplayText);
 }

Chapter 5

[133]

We may also get the converted phrases in other formats, as described in the
following table:

Format Description

LexicalForm This is the raw, unprocessed
recognition result.

InverseTextNormalizationResult
This displays phrases such as one
two three four as 1234, so it is ideal for
usages such as go to second street.

MaskedInverseTextNormalizationResult
Inverse text normalization and the
profanity mask. No capitalization or
punctuation is applied.

For our use, we are just interested in the DisplayText. With a populated list of
recognized phrases, we raise the status update event:

 SpeechToTextEventArgs args = new
SpeechToTextEventArgs(SttStatus.Success, $"STT completed with status:
{e.PhraseResponse.RecognitionStatus.ToString()}", phrasesToDisplay);

 RaiseSttStatusUpdated(args);
 }

To be able to use this class, we need a couple of public functions so that we can start
speech recognition:

 public void StartMicToText()
 {
 _micRecClient.StartMicAndRecognition();
 _isMicRecording = true;
 }

The StartMicToText method will call the StartMicAndRecognition method on the
_micRecClient object. This will allow us to use the microphone to convert spoken
audio. This function will be our main way of accessing this API:

 public void StartAudioFileToText(string audioFileName) {
 using (FileStream fileStream = new FileStream(audioFileName,
FileMode.Open, FileAccess.Read))
 {
 int bytesRead = 0;
 byte[] buffer = new byte[1024];

Speaking with Your Application

[134]

The second function will require a filename for the audio file, with the audio we
want to convert. We open the file, with read access, and are ready to read it:

 try {
 do {
 bytesRead = fileStream.Read(buffer, 0, buffer.Length);
 _dataRecClient.SendAudio(buffer, bytesRead);
 } while (bytesRead > 0);
 }

As long as we have data available, we read from the file. We will fill up the buffer,
and call the SendAudio method. This will then trigger a recognition operation in
the service.

If any exceptions occur, we make sure to output the exception message to a debug
window. Finally, we need to call the EndAudio method so that the service does not
wait for any more data:

 catch(Exception ex) {
 Debug.WriteLine($"Exception caught: {ex.Message}");
 }
 finally {
 _dataRecClient.EndAudio();
 }

Before leaving this class, we need to dispose of our API clients. Add the following
in the Dispose function:

 if (_micRecClient != null) {
 _micRecClient.EndMicAndRecognition();
 _micRecClient.OnMicrophoneStatus -= OnMicrophoneStatus;
 _micRecClient.OnPartialResponseReceived -=
OnPartialResponseReceived;
 _micRecClient.OnResponseReceived -= OnResponseReceived;
 _micRecClient.OnConversationError -=
OnConversationErrorReceived;

 _micRecClient.Dispose();
 _micRecClient = null;
 }

 if(_dataRecClient != null) {
 _dataRecClient.OnIntent -= OnIntentReceived;
 _dataRecClient.OnPartialResponseReceived -=
OnPartialResponseReceived;

Chapter 5

[135]

 _dataRecClient.OnConversationError -=
OnConversationErrorReceived;
 _dataRecClient.OnResponseReceived -= OnResponseReceived;

 _dataRecClient.Dispose();
 _dataRecClient = null;
 }

We stop microphone recording, unsubscribe from all events, and dispose and clear
the client objects.

Make sure that the application compiles before moving on. We will look at how to
use this class presently.

Letting the application speak back
We have already seen how to make the application speak back to us. We are going
to use the same classes we created in Chapter 1, Getting Started with Azure Cognitive
Services. Copy Authentication.cs and TextToSpeech.cs from the example project
from Chapter 1, Getting Started with Azure Cognitive Services, into the Model folder.
Make sure that the namespaces are changed accordingly.

As we have been through the code already, we will not go through it again. We
will instead look at some of the details left out in Chapter 1, Getting Started with Azure
Cognitive Services.

Audio output format
The audio output format can be one of the following formats:

• raw-8khz-8bit-mono-mulaw

• raw-16khz-16bit-mono-pcm

• riff-8khz-8bit-mono-mulaw

• riff-16khz-16bit-mono-pcm

Speaking with Your Application

[136]

Error codes
There are four possible error codes that can occur in calls to the API. These are
described in the following table:

Code Description

400 / BadRequest
A required parameter is missing, empty, or null.
Alternatively, a parameter is invalid. An example
may be a string that's longer than the allowed length.

401 / Unauthorized The request is not authorized.
413 /
RequestEntityTooLarge The SSML input is larger than what's supported.

502 / BadGateway A network-related or server-related issue.

Supported languages
The following languages are supported:

English (Australia), English (United Kingdom), English (United States), English
(Canada), English (India), Spanish, Mexican Spanish, German, Arabic (Egypt),
French, Canadian French, Italian, Japanese, Portuguese, Russian, Chinese (S),
Chinese (Hong Kong), and Chinese (T).

Utilizing LUIS based on spoken commands
To utilize the features that we have just added, we are going to modify LuisView
and LuisViewModel. Add a new Button in the View, which will make sure that we
record commands. Add a corresponding ICommand in the ViewModel.

We also need to add a few more members to the class:

 private SpeechToText _sttClient;
 private TextToSpeech _ttsClient;
 private string _bingApiKey = "BING_SPEECH_API_KEY";

The first two will be used to convert between spoken audio and text. The third is the
API key for the Bing Speech API.

Make the ViewModel implement IDisposable, and explicitly dispose the
SpeechToText object.

Chapter 5

[137]

Create the objects by adding the following in the constructor:

_sttClient = new SpeechToText(_bingApiKey);
_sttClient.OnSttStatusUpdated += OnSttStatusUpdated;

_ttsClient = new TextToSpeech();
_ttsClient.OnAudioAvailable += OnTtsAudioAvailable;
_ttsClient.OnError += OnTtsError;
GenerateHeaders();

This will create the client objects and subscribe to the required events. Finally, it will
call a function to generate authentication tokens for the REST API calls. This function
should look like this:

private async void GenerateHeaders()
{
 if (await _ttsClient.GenerateAuthenticationToken(_bingApiKey))
 _ttsClient.GenerateHeaders();
}

If we receive any errors from _ttsClient, we want to output it to the debug console:

 private void OnTtsError(object sender, AudioErrorEventArgs e)
 {
 Debug.WriteLine($"Status: Audio service failed -
{e.ErrorMessage}");
 }

We do not need to output this to the UI, as this is a nice-to-have feature.

If we have audio available, we want to make sure that we play it. We do so by
creating a SoundPlayer object:

 private void OnTtsAudioAvailable(object sender, AudioEventArgs e)
 {
 SoundPlayer player = new SoundPlayer(e.EventData);
 player.Play();
 e.EventData.Dispose();
 }

Using the audio stream we got from the event arguments, we can play the audio to
the user.

If we have a status update from _sttClient, we want to display this in the textbox.

Speaking with Your Application

[138]

If we have successfully recognized spoken audio, we want to show the Message
string if it is available:

 private void OnSttStatusUpdated(object sender,
SpeechToTextEventArgs e) {
 Application.Current.Dispatcher.Invoke(() => {
 StringBuilder sb = new StringBuilder();

 if(e.Status == SttStatus.Success) {
 if(!string.IsNullOrEmpty(e.Message)) {
 sb.AppendFormat("Result message: {0}\n\n",
e.Message);
 }

We also want to show all recognized phrases. Using the first available phrase, we
make a call to LUIS:

 if(e.Results != null && e.Results.Count != 0) {
 sb.Append("Retrieved the following results:\n");
 foreach(string sentence in e.Results) {
 sb.AppendFormat("{0}\n\n", sentence);
 }
 sb.Append("Calling LUIS with the top result\n");
 CallLuis(e.Results.FirstOrDefault());
 }
 }

If the recognition failed, we print out any error messages that we may have. Finally,
we make sure that the ResultText is updated with the new data:

 else {
 sb.AppendFormat("Could not convert speech to
text:{0}\n", e.Message);
 }

 sb.Append("\n");
 ResultText = sb.ToString();
 });
 }

The newly created ICommand needs to have a function to start the recognition process:

 private void RecordUtterance(object obj) {
 _sttClient.StartMicToText();
 }

Chapter 5

[139]

The function starts the microphone recording.

Finally, we need to make some modifications to OnLuisUtteranceResultUpdated.
Make the following modifications, where we output any DialogResponse:

 if (e.RequiresReply && !string.IsNullOrEmpty(e.DialogResponse))
 {
 await _ttsClient.SpeakAsync(e.DialogResponse,
CancellationToken.None);
 sb.AppendFormat("Response: {0}\n", e.DialogResponse);
 sb.Append("Reply in the left textfield");

 RecordUtterance(sender);
 }
 else
 {
 await _ttsClient.SpeakAsync($"Summary: {e.Message}",
CancellationToken.None);
 }

This will play the DialogResponse if it exists. The application will ask you for more
information if required. It will then start the recording, so we can answer without
clicking any buttons.

If no DialogResponse exists, we simply make the application say the summary
to us. This will contain data on intents, entities, and actions from LUIS.

Knowing who is speaking
Using the Speaker Recognition API, we can identify who is speaking. By defining
one or more speaker profiles with corresponding samples, we can identify whether
any of them are speaking at any time.

To be able to utilize this feature, we need to go through a few steps:

1. We need to add one or more speaker profiles to the service.
2. Each speaker profile enrolls several spoken samples.
3. We call the service to identify a speaker based on audio input.

If you have not already done so, sign up for an API key for the Speaker Recognition
API at https://portal.azure.com.

https://portal.azure.com
https://portal.azure.com

Speaking with Your Application

[140]

Start by adding a new NuGet package to your smart-house application. Search for
and add Microsoft.ProjectOxford.SpeakerRecognition.

Add a new class called SpeakerIdentification to the Model folder of your project.
This class will hold all of the functionality related to speaker identification.

Beneath the class, we will add another class, containing EventArgs for status updates:

 public class SpeakerIdentificationStatusUpdateEventArgs :
EventArgs
 {
 public string Status { get; private set; }
 public string Message { get; private set; }
 public Identification IdentifiedProfile { get; set; }

 public SpeakerIdentificationStatusUpdateEventArgs (string
status, string message)
 {
 Status = status;
 Message = message;
 }
 }

The two first properties should be self-explanatory. The last one,
IdentificationProfile, will hold the results of a successful identification
process. We will look at what information this contains presently.

We also want to send events for errors, so let's add an EventArgs class for the
required information:

 public class SpeakerIdentificationErrorEventArgs : EventArgs {
 public string ErrorMessage { get; private set; }

 public SpeakerIdentificationErrorEventArgs(string
errorMessage)
 {
 ErrorMessage = errorMessage;
 }
 }

Again, the property should be self-explanatory.

Chapter 5

[141]

In the SpeakerIdentification class, add two events and one private member at the
top of the class:

 public event EventHandler
<SpeakerIdentificationStatusUpdateEventArgs>
 OnSpeakerIdentificationStatusUpdated;
 public event EventHandler <SpeakerIdentificationErrorEventArgs>
 OnSpeakerIdentificationError;

 private ISpeakerIdentificationServiceClient _
speakerIdentificationClient;

The events will be triggered if we have any status updates, a successful identification,
or errors. The ISpeakerIdentificationServiceClient object is the access point for
the Speaker Recognition API. Inject this object through the constructor.

To make it easier to raise events, add two helper functions, one for each event. Call
these RaiseOnIdentificationStatusUpdated and RaiseOnIdentificationError.
They should accept the corresponding EventArgs object as a parameter and trigger
the corresponding event.

Adding speaker profiles
To be able to identify speakers, we need to add profiles. Each profile can be seen as a
unique person who we can identify later.

At the time of writing, each subscription allows for 1,000 speaker profiles to be
created. This also includes profiles that are created for verification, which we will
look at presently.

To facilitate creating profiles, we need to add some elements to our
AdministrationView and AdministrationViewModel properties, so open
these files.

In the View, add a new button for adding speaker profiles. Also, add a list box,
which will show all of our profiles. How you lay out the UI is up to you.

The ViewModel will need a new ICommand property for the button. It will also
need an ObservableObject property for our profile list; make sure it is of type
Guid. We will also need to be able to select a profile, so add a Guid property for
the selected profile.

Speaking with Your Application

[142]

Additionally, we need to add a new member to the ViewModel:

 private SpeakerIdentification _speakerIdentification;

This is the reference to the class we created earlier. Create this object in the
constructor, passing on an ISpeakerIdentificationServiceClient object, which
you inject via the ViewModel's constructor. In the constructor, you should also
subscribe to the events we created:

 _speakerIdentification.OnSpeakerIdentificationError +=
OnSpeakerIdentificationError;
 _speakerIdentification.OnSpeakerIdentificationStatusUpdated +=
OnSpeakerIdentificationStatusUpdated;

Basically, we want both event handles to update the status text with the message
they carry:

 Application.Current.Dispatcher.Invoke(() =>
 {
 StatusText = e.Message;
 });

The preceding code is for OnSpeakerIdentificationStatusUpdated. The same
should be used for OnSpeakerIdentificationError, but set StatusText to be
e.ErrorMessage instead.

In the function created for our ICommand property, we do the following to create
a new profile:

 private async void AddSpeaker(object obj)
 {
 Guid speakerId = await _speakerIdentification.
CreateSpeakerProfile();

We make a call to our _speakerIdentification object's CreateSpeakerProfile
function. This function will return a Guid, which is the unique ID of that speaker.
In our example, we do not do anything further with this. In a real-life application,
I would recommend mapping this ID to a name in some way. As you will see
presently, identifying people through GUIDs is for machines, not people:

 GetSpeakerProfiles();
 }

Chapter 5

[143]

We finish this function by calling a GetSpeakerProfile function, which we will
create next. This will fetch a list of all the profiles we have created so that we can use
these throught the further process:

 private async void GetSpeakerProfiles()
 {
 List<Guid> profiles = await _speakerIdentification.
ListSpeakerProfiles();

 if (profiles == null) return;

In our GetSpeakerProfiles function, we call ListSpeakerProfiles on our _
speakerIdentification object. This will, as we will see presently, fetch a list of
GUIDs, containing the profile IDs. If this list is null, there is no point in moving on:

 foreach(Guid profile in profiles)
 {
 SpeakerProfiles.Add(profile);
 }
 }

If the list does contain anything, we add these IDs to our SpeakerProfiles, which is
the ObservableCollection property. This will show all of our profiles in the UI.

This function should also be called from the Initialize function, so we populate
the list when we start the application.

Back in the SpeakerIdentification class, create a new function called
CreateSpeakerProfile. This should have the return type Task<Guid> and be
marked as async:

 public async Task<Guid> CreateSpeakerProfile()
 {
 try
 {
 CreateProfileResponse response = await _
speakerIdentificationClient.CreateProfileAsync("en-US");

We will then make a call to CreateProfileAsync on the API object. We need to
specify the locale, which is used for the speaker profile. At the time of writing, en-US
is the only valid option.

Speaking with Your Application

[144]

If the call is successful, we get a CreateProfileResponse object in response. This
contains the ID of the newly created speaker profile:

 if (response == null)
 {
 RaiseOnIdentificationError(
 new SpeakerIdentificationErrorEventArgs
 ("Failed to create speaker profile."));
 return Guid.Empty;
 }

 return response.ProfileId;
 }

If the response is null, we raise an error event. If it contains data, we return the
ProfileId to the caller.

Add the corresponding catch clause to finish the function.

Create a new function called ListSpeakerProfile. This should return
Task<List<Guid>> and be marked as async:

 public async Task<List<Guid>> ListSpeakerProfiles()
 {
 try
 {
 List<Guid> speakerProfiles = new List<Guid>();

 Profile[] profiles = await _speakerIdentificationClient.
GetProfilesAsync();

We will then create a list of type Guid, which is the list of speaker profiles
we will return. Then, we call the GetProfilesAsync method on our
_speakerIdentificationClient object. This will get us an array of type Profile,
which contains information on each profile. This is information such as creation
time, enrollment status, last modified, and so on. We are interested in the IDs of
each profile:

 if (profiles == null || profiles.Length == 0)
 {
 RaiseOnIdentificationError(new SpeakerIdentificationEr
rorEventArgs("No profiles exist"));
 return null;
 }

Chapter 5

[145]

 foreach (Profile profile in profiles)
 {
 speakerProfiles.Add(profile.ProfileId);
 }

 return speakerProfiles;
 }

If any profiles are returned, we loop through the array and add each profileId to
the previously created list. This list is then returned to the caller, which in our case
will be the ViewModel.

End the function with the corresponding catch clause. Make sure that the code
compiles and executes as expected before continuing. This means that you should
now be able to add speaker profiles to the service and get the created profiles
displayed in the UI.

To delete a speaker profile, we will need to add a new function to
SpeakerIdentification. Call this function DeleteSpeakerProfile, and let it
accept a Guid as its parameter. This will be the ID of the given profile we want to
delete. Mark the function as async. The function should look as follows:

public async void DeleteSpeakerProfile(Guid profileId)
{
 try
 {
 await _speakerIdentificationClient.
DeleteProfileAsync(profileId);
 }
 catch (IdentificationException ex)
 {
 RaiseOnIdentificationError(new SpeakerIdentificationErrorEventAr
gs($"Failed to
 delete speaker profile: {ex.Message}"));
 }
 catch (Exception ex)
 {
 RaiseOnIdentificationError(new SpeakerIdentificationErrorEventAr
gs($"Failed to
 delete speaker profile: {ex.Message}"));
 }
}

Speaking with Your Application

[146]

As you can see, the call to the DeleteProfileAsync method expects a Guid type,
profileId. There is no return value and, as such, when we call this function,
we need to call the GetSpeakerProfile method in our ViewModel.

To facilitate the deletion of speaker profiles, add a new button to the UI and
a corresponding ICommand property in the ViewModel.

Enrolling a profile
With a speaker profile in place, we need to associate spoken audio with the profile.
We do this through a process called enrolling. For speaker identification, enrolling
is text-independent. This means that you can use whatever sentence you want for
enrollment. Once the voice is recorded, a number of features will be extracted
to form a unique voice-print.

When enrolling, the audio file you are using must be 5 seconds at least and 5 minutes
at most. Best practice states that you should accumulate at least 30 seconds of speech.
This is 30 seconds after silence has been removed, so several audio files may be
required. This recommendation can be avoided by specifying an extra parameter, as
we will see presently.

How you choose to upload the audio file is up to you. In the smart-house
application, we will use a microphone to record live audio. To do so, we will need
to add a new NuGet package called NAudio. This is an audio library for .NET,
which simplifies audio work.

We will also need a class to deal with recording, which is out of the scope of this
book. As such, I recommend you copy the Recording.cs file, which can be found
in the sample project in the Model folder.

In the AdministrationViewModel ViewModel, add a private member for the
newly copied class. Create the class and subscribe to the events defined in the
Initialize function:

 _recorder = new Recording();
 _recorder.OnAudioStreamAvailable +=
OnRecordingAudioStreamAvailable;
 _recorder.OnRecordingError += OnRecordingError;

We have an event for errors and one for available audio stream. Let
OnRecordingError print the ErrorMessage to the status text field.

Chapter 5

[147]

In OnAudioStreamAvailable, add the following:

 Application.Current.Dispatcher.Invoke(() =>
 {
 _speakerIdentification.CreateSpeakerEnrollment(e.AudioStream,
SelectedSpeakerProfile);
 });

Here, we call CreateSpeakerEnrollment on the _speakerIdentification
object. We will cover this function presently. The parameters we pass on are the
AudioStream, from the recording, as well as the ID of the selected profile.

To be able to get audio files for enrollment, we need to start and stop the recording.
This can be done by simply adding two new buttons, one for start and one for stop.
They will then need to execute one of the following:

 _recorder.StartRecording();
 _recorder.StopRecording();

Back in the SpeakerIdentification.cs file, we need to create a new function,
CreateSpeakerEnrollment. This should accept Stream and Guid as parameters,
and be marked as async:

 public async void CreateSpeakerEnrollment(Stream audioStream, Guid
profileId) {
 try {
 OperationLocation location = await _
speakerIdentificationClient.EnrollAsync(audioStream, profileId);

In this function, we call the EnrollAsync function on
_speakerIdentificationClient. This function requires both the audioStream
and profileId as parameters. An optional third parameter is a bool type variable,
which lets you decide whether or not you would like to use the recommended
speech length or not. The default is false, meaning that you use the recommended
setting of at least 30 seconds of speech.

If the call is successful, we get an OperationLocation object back. This holds a URL
that we can query for the enrollment status, which is precisely what we will do:

 if (location == null) {
 RaiseOnIdentificationError(new SpeakerIdentificationErrorE
ventArgs("Failed to start enrollment process."));
 return;
 }

 GetEnrollmentOperationStatus(location);
 }

Speaking with Your Application

[148]

First, we make sure that we have the location data. Without it, there is no
point in moving on. If we do have the location data, we call a function,
GetEnrollmentOperationStatus, specifying the location as the parameter.

Add the corresponding catch clause to finish the function.

The GetEnrollmentOperationStatus method accepts OperationLocation as
a parameter. When we enter the function, we move into a while loop, which will
run until the operation completes. We call CheckEnrollmentStatusAsync,
specifying the location as the parameter. If this call is successful, it will return
an EnrollmentOperation object, which contains data such as status, enrollment
speech time, and an estimation of the time of enrollment left:

 private async void GetEnrollmentOperationStatus(OperationLocation
location) {
 try {
 while(true) {
 EnrollmentOperation result = await _
speakerIdentificationClient.CheckEnrollmentStatusAsync(location);

When we have retrieved the result, we check to see if the status is running or not.
If it isn't, the operation has either failed, succeeded, or not started. In any case, we
do not want to check any further, so we send an update with the status and break
out of the loop:

 if(result.Status != Status.Running)
 {
 RaiseOnIdentificationStatusUpdated(new SpeakerIden
tificationStatusUpdateEventArgs(result.Status.ToString(),
 $"Enrollment finished. Enrollment status: {result.
ProcessingResult.EnrollmentStatus.ToString()}"));
 break;
 }

 RaiseOnIdentificationStatusUpdated(new Speaker
IdentificationStatusUpdateEventArgs(result.Status.ToString(),
"Enrolling..."));
 await Task.Delay(1000);
 }
 }

If the status is still running, we update the status and wait for 1 second before
trying again.

Chapter 5

[149]

With enrollment completed, there may be times when we need to reset the
enrollment for a given profile. We can do so by creating a new function in
SpeakerIdentification. Name it ResetEnrollments, and let it accept a Guid as a
parameter. This should be the profile ID of the speaker profile to reset. Execute the
following inside a try clause:

 await _speakerIdentificationClient .ResetEnrollmentsAsync(pro
fileId);

This will delete all audio files associated with the given profile and also reset
the enrollment status. To call this function, add a new button to the UI and the
corresponding ICommand property in the ViewModel.

If you compile and run the application, you may get a result similar to the
following screenshot:

Identifying the speaker
The last step is to identify the speaker, which we will do in the HomeView and
corresponding HomeViewModel. We do not need to modify the UI much, but we do
need to add two buttons in order to start and stop the recording. Alternatively, if you
are not using a microphone, you can get away with one button for browsing an audio
file. Either way, add the corresponding ICommand properties in the ViewModel.

We also need to add private members for the Recording and
SpeakerIdentification classes. Both should be created in the constructor, where
we should inject ISpeakerIdentificationServiceClient as well.

In the Initialize function, subscribe to the required events:
 _speakerIdentification.OnSpeakerIdentificationError +=
OnSpeakerIdentificationError;
 _speakerIdentification.OnSpeakerIdentificationStatusUpdated +=
OnSpeakerIdentificationStatusReceived;

 _recording.OnAudioStreamAvailable += OnSpeakerRecordingAvailable;
 _recording.OnRecordingError += OnSpeakerRecordingError;

Speaking with Your Application

[150]

For both of the error event handlers, OnSpeakerRecordingError and
OnSpeakerIdentificationError, we do not wish to print the error message here.
For simplicity, we just output it to the debug console window.

The OnSpeakerRecordingAvailable event will be triggered when we have recorded
some audio. This is the event handler that will trigger an attempt to identify the
person speaking.

The first thing we need to do is get a list of speaker profile IDs. We do so by calling
ListSpeakerProfiles, which we looked at earlier:

 private async void OnSpeakerRecordingAvailable(object sender,
RecordingAudioAvailableEventArgs e)
 {
 try
 {
 List<Guid> profiles = await _speakerIdentification.
ListSpeakerProfiles();

With the list of speaker profiles, we call the IdentifySpeaker method on the
_speakerIdentification object. We pass on the recorded audio stream and the
profile list, as an array, as parameters to the function:

 _speakerIdentification.IdentifySpeaker(e.AudioStream,
profiles.ToArray());
 }

Finish the event handler by adding the corresponding catch clause.

Back in the SpeakerIdentification.cs file, we add the new function,
IdentifySpeaker:

 public async void IdentifySpeaker(Stream audioStream, Guid[]
speakerIds)
 {
 try
 {
 OperationLocation location = await _
speakerIdentificationClient.IdentifyAsync(audioStream, speakerIds);

The function should be marked as async and accept a Stream and an array of Guid
as parameters. To identify a speaker, we make a call to the IdentifyAsync function
on the _speakerIdentificationClient object. This requires an audio file, in the
form of a Stream, as well as an array of profile IDs. An optional third parameter is
a bool, which you can use to indicate whether or not you want to deviate from the
recommended speech length.

Chapter 5

[151]

If the call succeeds, we get an OperationLocation object back. This contains a URL
that we can use to retrieve the status of the current identification process:

 if (location == null)
 {
 RaiseOnIdentificationError(new
SpeakerIdentificationErrorEventArgs ("Failed to identify speaker."));
 return;
 }
 GetIdentificationOperationStatus(location);
 }

If the resulting data contains nothing, we do not want to bother doing
anything else. If it does contain data, we pass it on as a parameter to the
GetIdentificationOperationStatus method:

 private async void GetIdentificationOperationStatus
(OperationLocation location)
 {
 try
 {
 while (true)
 {
 IdentificationOperation result = await _
speakerIdentificationClient.CheckIdentificationStatusAsync(location);

This function is quite similar to GetEnrollmentOperationStatus. We go
into a while loop, which will run until the operation completes. We call
CheckIdentificationStatusAsync, passing on the location as a parameter,
getting IdentificationOperation as a result. This will contain data, such as a
status, the identified profiles ID, and the confidence of a correct result.

If the operation is not running, we raise the event with the status message and the
ProcessingResult. If the operation is still running, we update the status and wait
for 1 second before trying again:

 if (result.Status != Status.Running)
 {
 RaiseOnIdentificationStatusUpdated(new SpeakerIdenti
ficationStatusUpdateEventArgs(result.Status.ToString(), $"Enrollment
finished with message:{result.Message}.") { IdentifiedProfile =
result.ProcessingResult });
 break;
 }

Speaking with Your Application

[152]

 RaiseOnIdentificationStatusUpdated(new SpeakerIdentificati
onStatusUpdateEventArgs(result.Status.ToString(), "Identifying..."));

 await Task.Delay(1000);
 }
 }

Add the corresponding catch clause before heading back to the HomeViewModel.

The last piece in the puzzle is to create OnSpeakerIdentificationStatusReceived.
Add the following code inside HomeViewModel:

 Application.Current.Dispatcher.Invoke(() =>
 {
 if (e.IdentifiedProfile == null) return;

 SystemResponse = $"Hi there,{e.IdentifiedProfile.
IdentifiedProfileId}";
 });

We need to check to see whether or not we have an identified profile. If we do not,
we leave the function. If we have an identified profile, we give a response to the
screen, stating who it is.

As with the administrative side of the application, this is a place where it would be
convenient to have name-to-profile ID mapping. As you can see from the following
resulting screenshot, recognizing one GUID among many is not that easy:

Chapter 5

[153]

Verifying a person through speech
The process of verifying if a person is who they claim to be is quite similar to the
identification process. To show how it is done, we will create a new example project,
as we do not need this functionality in our smart-house application.

Add the Microsoft.ProjectOxford.SpeakerRecognition and NAudio NuGet
packages to the project. We will need the Recording class that we used earlier,
so copy this from the smart-house application's Model folder.

Open the MainView.xaml file. We need a few elements in the UI for the example
to work. Add a Button element to add speaker profiles. Add two Listbox
elements. One will hold available verification phrases while the other will
list our speaker profiles.

Add Button elements for deleting a profile, starting and stopping enrollment
recording, resetting enrollment, and starting/stopping verification recording.

In the ViewModel, you will need to add two ObservableCollection properties:
one of type string, the other of type Guid. One will contain the available verification
phrases, while the other will contain the list of speaker profiles. You will also need
a property for the selected speaker profile, and we also want a string property
to show the status.

The ViewModel will also need seven ICommand properties, one for each of our buttons.

Create a new class in the Model folder and call this SpeakerVerification. Add two
new classes beneath this one, in the same file.

The first one is the event arguments that we will pass on when we raise a status
update event. The Verification property will, if set, hold the verification result,
which we will see presently:

 public class SpeakerVerificationStatusUpdateEventArgs : EventArgs
 {
 public string Status { get; private set; }
 public string Message { get; private set; }
 public Verification VerifiedProfile { get; set; }

 public SpeakerVerificationStatusUpdateEventArgs(string
status,string message)
 {
 Status = status;
 Message = message;
 }
 }

Speaking with Your Application

[154]

The next class is a generic event argument, which is used when we raise an error
event. In SpeakerVerification itself, add the following events:

 public class SpeakerVerificationErrorEventArgs : EventArgs
 {
 public string ErrorMessage { get; private set; }

 public SpeakerVerificationErrorEventArgs(string errorMessage)
 {
 ErrorMessage = errorMessage;
 }
 }

For our convenience, add helper functions to raise these. Call them
RaiseOnVerificationStatusUpdated and RaiseOnVerificationError.
Raise the correct event in each of them:

 public event EventHandler
<SpeakerVerificationStatusUpdateEventArgs>
OnSpeakerVerificationStatusUpdated;

 public event EventHandler<SpeakerVerificationErrorEventArgs>
OnSpeakerVerificationError;

We also need to add a private member called ISpeakerVerificationServiceClient.
This will be in charge of calling the API. We inject this through the constructor.

Add the following functions to the class:

• CreateSpeakerProfile: No parameters, the async function, and the return
type Task<Guid>

• ListSpeakerProfile: No parameters, the async function, and the return
type Task<List<Guid>>

• DeleteSpeakerProfile: Guid as the required parameter, the async function,
no returned values

• ResetEnrollments: Guid as the required parameter, the async function,
no returned values

The contents of these functions can be copied from the corresponding functions
in the smart-house application, as they are exactly the same. The only difference
is that you need to change the API call from _speakerIdentificationClient
to _speakerVerificationClient. Also, raising the events will require the newly
created event arguments.

Next, we need a function to list verification phrases. These are phrases that are
supported for use with verification. When enrolling a profile, you are required
to say one of the sentences in this list.

Chapter 5

[155]

Create a function named GetVerificationPhrase. Have it return
Task<List<string>>, and mark it as async:

 public async Task<List<string>> GetVerificationPhrase()
 {
 try
 {
 List<string> phrases = new List<string>();

 VerificationPhrase[] results = await _
speakerVerificationClient.GetPhrasesAsync("en-US");

We will make a call to GetPhrasesAsync, specifying the language we want the
phrases to be in. At the time of writing, English is the only possible choice.

If this call is successful, we will get an array of VerificationPhrases in return.
Each element in this array contains a string with the following phrase:

 foreach(VerificationPhrase phrase in results) {
 phrases.Add(phrase.Phrase);
 }
 return phrases;
 }

We loop through the array and add the phrases to our list, which we will return
to the caller.

So, we have created a profile and we have the list of possible verification phrases.
Now, we need to do the enrollment. To enroll, the service requires at least three
enrollments from each speaker. This means that you choose a phrase and enroll
it at least three times.

When you do the enrollment, it is highly recommended to use the same recording
device that you will use for verification.

Create a new function called CreateSpeakerEnrollment. This should require a
Stream and a Guid. The first parameter is the audio to use for enrollment. The latter
is the ID of the profile we are enrolling. The function should be marked as async,
and have no return value:

 public async void CreateSpeakerEnrollment(Stream audioStream, Guid
profileId) {
 try {
 Enrollment enrollmentStatus = await _
speakerVerificationClient.EnrollAsync(audioStream, profileId);

Speaking with Your Application

[156]

When we call EnrollAsync, we pass on the audioStream and profileId
parameters. If the call is successful, we get an Enrollment object back. This contains
the current status of enrollment and specifies the number of enrollments you need
to add before completing the process.

If the enrollmentStatus is null, we exit the function and notify any subscribers.
If we do have status data, we raise the event to notify it that there is a status
update, specifying the current status:

 if (enrollmentStatus == null) {
 RaiseOnVerificationError(new SpeakerVerificationErrorE
ventArgs("Failed to start enrollment process."));
 return;
 }

 RaiseOnVerificationStatusUpdate(new SpeakerVerificationStat
usUpdateEventArgs("Succeeded", $"Enrollment status:{enrollmentStatus.
EnrollmentStatus}"));
 }

Add the corresponding catch clause to finish up the function.

The last function we need in this class is a function for verification. To verify
a speaker, you need to send in an audio file. This file must be at least 1 second
and at most 15 seconds long. You will need to record the same phrase that you
used for enrollment.

Call the VerifySpeaker function and make it require a Stream and Guid. The stream
is the audio file we will use for verification. The Guid is the ID of the profile we wish
to verify. The function should be async and have no return type:

 public async void VerifySpeaker(Stream audioStream, Guid
speakerProfile) {
 try {
 Verification verification = await _
speakerVerificationClient.VerifyAsync(audioStream, speakerProfile);

We will make a call to VerifyAsync from _speakerVerificationClient. The
required parameters are audioStream and speakerProfile.

A successful API call will result in a Verification object in response. This will
contain the verification results, as well as the confidence of the results being correct:

 if (verification == null) {
 RaiseOnVerificationError(new SpeakerVerificationErrorE
ventArgs("Failed to verify speaker."));

Chapter 5

[157]

 return;
 }

 RaiseOnVerificationStatusUpdate(new SpeakerVerificationSta
tusUpdateEventArgs("Verified", "Verified speaker") { VerifiedProfile =
verification });
 }

If we do have a verification result, we raise the status update event. Add the
corresponding catch clause to complete the function.

Back in the ViewModel, we need to wire up the commands and event handlers.
This is done in a similar manner as for speaker identification, and as such we
will not cover the code in detail.

With the code compiling and running, the result may look similar to the
following screenshot:

Here, we can see that we have created a speaker profile. We have also completed the
enrollment and are ready to verify the speaker.

Speaking with Your Application

[158]

Verifying the speaker profile may result in the following:

As you can see, the verification was accepted with high confidence.

If we try to verify this using a different phrase or let someone else try to verify as a
particular speaker profile, we may end up with the following result:

Here, we can see that the verification has been rejected.

Chapter 5

[159]

Customizing speech recognition
When we use speech recognition systems, there are several components that
are working together. Two of the more important components are acoustic and
language models. The first one labels short fragments of audio into sound units. The
second helps the system decide the words, based on the likelihood of a given word
appearing in certain sequences.

Although Microsoft has done a great job of creating comprehensive acoustic and
language models, there may still be times when you need to customize these models.

Imagine that you have an application that is supposed to be used in a factory
environment. Using speech recognition will require acoustic training of that
environment so that the recognition can separate it from usual factory noises.

Another example is if your application is used by a specific group of people, say, an
application for search, where programming is the main topic. You would typically
use words such as object-oriented, dot net, or debugging. This can be recognized by
customizing language models.

Creating a custom acoustic model
To create custom acoustic models, you will need audio files and transcripts. Each
audio file must be stored as a WAV and be between 100 ms and 1 minute in length.
It is recommended that there is at least 100 ms of silence at the start and end of the
file. Typically, this will be between 500 ms and 1 second. With a lot of background
noise, it is recommended to have silences in-between content.

Each file should contain one sentence or utterance. Files should be uniquely named,
and an entire set of files can be up to 2 GB. This translates to about 17 to 34 hours
of audio, depending on the sampling rate. All files in one set should be placed in
a zipped folder, which then can be uploaded.

Accompanying the audio files is a single file with the transcript. This should
name the file and have the sentence next to the name. The filename and sentence
should be separated by a tab.

Uploading the audio files and transcript will make CRIS process it. When this process
is done, you will get a report stating which sentences have failed or succeeded. If
anything fails, you will get the reason for the failure.

Speaking with Your Application

[160]

When the dataset has been uploaded, you can create the acoustic model. This
will be associated with the dataset you select. When the model has been created,
you can start the process to train it. Once the training is completed, you can deploy
the model.

Creating a custom language model
Creating custom language models will also require a dataset. This set is a single plain
text file containing sentences or utterances unique to your model. Each new line
marks a new utterance. The maximum file size is 2 GB.

Uploading the file will make CRIS process it. Once the processing is done, you will
get a report, which will print any errors, with the reason of failure.

With the processing done, you can create a custom language model. Each model will
be associated with a given dataset of your selection. Once created, you can train the
model, and when the training complete, you can deploy it.

Deploying the application
To deploy and use the custom models, you will need to create a deployment.
Here, you will name and describe the application. You can select acoustic
models and language models. Be aware that you can only select one of each
per deployed application.

Once created, the deployment will start. This process can take up to 30 minutes to
complete, so be patient. When the deployment completes, you can get the required
information by clicking on the application name. You will be given URLs you can
use, as well as subscription keys to use.

To use the custom models with the Bing Speech API, you can overload
CreateDataClientWithIntent and CreateMicrophoneClient. The overloads you
will want to use specify both the primary and secondary API keys. You need to use
the ones supplied by CRIS. Additionally, you need to specify the supplied URL
as the last parameter.

Once this is done, you are able to use customized recognition models.

Chapter 5

[161]

Translating speech on the fly
Using the Translator Speech API, you can add automatic end-to-end translation for
speech. Utilizing this API, one can submit an audio stream of speech and retrieve a
textual and audio version of translated text. It uses silent detection to detect when
speech has ended. Results will be streamed back once the pause is detected.

For a comprehensive list of supported languages, please visit the following site:
https://www.microsoft.com/en-us/translator/business/languages/.

The result recieved from the API, will contain a stream of audio- and
text-based results. The results contain the source text in its original language
and the translation in the target language.

For a thorough example on how to use the Translator Speech API, please visit
the following sample at GitHub: https://github.com/MicrosoftTranslator/
SpeechTranslator.

Summary
Throughout this chapter, we have focused on speech. We started by looking at
how we can convert spoken audio to text and text to spoken audio. Using this,
we modified our LUIS implementation so that we can say commands and have
conversations with the smart-house application. From there, we moved on to see
how we can identify a person speaking using the Speaker Recognition API. Using
the same API, we also learned how to verify that a person is who they claim to be.
We briefly looked at the core functionality of the Custom Speech Service. Finally,
we briefly covered an introduction to the Translator Speech API.

In the following chapter, we will move back to textual APIs, where we will learn
how to explore and analyze text in different ways.

https://www.microsoft.com/en-us/translator/business/languages/
https://www.microsoft.com/en-us/translator/business/languages/
https://github.com/MicrosoftTranslator/SpeechTranslator
https://github.com/MicrosoftTranslator/SpeechTranslator

[163]

Understanding Text
The previous chapter covered the speech APIs. Throughout this chapter, we will
look closer at more language APIs. We will learn how to use spellcheck features.
We will then discover how to detect languages, key phrases, and sentiment in text.
Finally, we will look at the translator text API to see how we can detect languages
and translate text.

By the end of this chapter, we will have covered the following topics:

• Checking spelling and recognizing slang and informal language, common
names, homonyms, and brands

• Detecting language, key phrases, and sentiment in text
• Translating text on the fly

Setting up a common core
Before we get into the details, we want to set ourselves up for success. At the time
of writing, none of the language APIs that we will be covering have NuGet client
packages. As such, we will need to call directly to the REST endpoints. Because of
this, we will do some work beforehand to make sure that we get away with writing
less code.

Understanding Text

[164]

New project
We will not be adding the APIs to our smart-house application. Using the following
steps, create a new project using the MVVM template that we created in Chapter 1,
Getting Started with Azure Cognitive Services:

1. Go into the NuGet package manager and install Newtonsoft.Json. This will
help us deserialize API responses and serialize request bodies.

2. Right-click on References.
3. In the Assemblies tab, select System.Web and System.Runtime.

Serialization.
4. Click OK.
5. In the MainView.xaml file, add a TabControl element. All our additional

views will be added as TabItems in the MainView.

Web requests
All the APIs follow the same pattern. They call on their respective endpoints using
either POST or GET requests. Further on, they pass on parameters as query strings,
and some as request bodies. Since they have these similarities, we can create one
class that will handle all API requests.

In the Model folder, add a new class and call it WebRequest.

We also need a few private variables, as follows:

 private const string JsonContentTypeHeader = "application/json";

 private static readonly JsonSerializerSettings _settings = new
JsonSerializerSettings
 {
 DateFormatHandling = DateFormatHandling.IsoDateFormat,
 NullValueHandling = NullValueHandling.Ignore,
 ContractResolver = new
CamelCasePropertyNamesContractResolver()
 };

 private HttpClient _httpClient;
 private string _endpoint;

The constant, JsonContentTypeHeader, defines the content type that we want to use
for all API calls. The _settings phrase is a JsonSerializerSettings object, which
specifies how we want JSON data to be (de)serialized.

Chapter 6

[165]

The _httpClient is the object that will be used to make our API requests. The last
member, _endpoint, will hold the API endpoint.

As shown in the following code, our constructor will accept two parameters: one
string for the URI, and one string for the API key:

 public WebRequest(string uri, string apiKey)
 {
 _endpoint = uri;

 _httpClient = new HttpClient();
 _httpClient.DefaultRequestHeaders.Add("Ocp-Apim-Subscription-
Key", apiKey);
 }

We assign the uri to the corresponding member. Next, we create a new object of
a HttpClient type and add one request header. This is the header that contains
the given apiKey.

The class will contain one function, MakeRequest. This should have the return type
of Task<TResponse>, meaning a type that we specify when calling the function. As
you can see in the following code, it should accept three parameters: a HttpMethod, a
query string, and a TRequest, (which is a request body that we specify in the call).
The function should be asynchronous:

public async Task <TResponse> MakeRequest <TRequest, TResponse
(HttpMethod method, string queryString, TRequest requestBody =
default(TRequest))

The preceding lines show the complete function signature. Note how we do not need
to specify a request body, as there are some cases where it may be empty. We will
cover what TRequest and TResponse may be in a bit.

We enter a try clause, as shown in the following code:

 try {
 string url = $"{_endpoint}{queryString}";
 var request = new HttpRequestMessage(method, url);

 if (requestBody != null)
 request.Content = new StringContent (JsonConvert.
SerializeObject(requestBody, _settings), Encoding.UTF8,
JsonContentTypeHeader);

 HttpResponseMessage response = await _httpClient.
SendAsync(request);

Understanding Text

[166]

First, we create a url, consisting of our _endpoint and the queryString. Using this
and the specified method, we create a HttpRequestMessage object.

If we have a requestBody, we add Content to the request object by serializing
the requestBody.

With the request in order, we make an asynchronous call to SendAsync
on the _httpClient object. This will call the API endpoint, returning a
HttpResponseMessage containing the response.

If the response is successful, we want to get the Content as a string. This is done
as follows:

1. Make an asynchronous call to ReadAsStringAsync. This will return a string.
2. Deserialize the string as a TResponse object.
3. Return the deserialized object to the caller.

In the case that there is no data in responseContent, we return a default TResponse.
This will contain default values for all properties, as shown in the following code:

 if (response.IsSuccessStatusCode)
 {
 string responseContent = null;

 if (response.Content != null)
 responseContent = await response.Content.
ReadAsStringAsync();
 if (!string.IsNullOrWhiteSpace(responseContent))
 return JsonConvert.DeserializeObject<TResponse>(responseCo
ntent,_settings);

 return default(TResponse);
 }

If the API response contains any error code, then we try to get the error message
as a string (errorObjectString). In a typical application, you would want to
deserialize this and propagate it to the user. However, as this is a simple example
application, we will choose to output it to the Debug console window, as shown in
the following code:

 else
 {
 if (response.Content != null && response.Content.Headers.
ContentType.MediaType.Contains (JsonContentTypeHeader))
 {

Chapter 6

[167]

 var errorObjectString = await response.Content.
ReadAsStringAsync();
 Debug.WriteLine(errorObjectString);
 }
 }

Make sure you add the corresponding catch clause and output any exceptions
to the Debug console window. Also, make sure that you return a default TResponse
if any exceptions occur.

Data contracts
As we need to (de)serialize JSON data as a part of the requests and responses to
the APIs, we need to create data contracts. These will act as the TResponse and
TRequest objects, used in the WebRequest class.

Add a new folder called Contracts to the project. A typical data contract may look
like the following:

 [DataContract]
 public class TextErrors {
 [DataMember]
 public string id { get; set; }

 [DataMember]
 public string message { get; set; }
 }

This correlates to errors in the text analytics API. As you can see, it has two string
properties for id and message. Both may appear in an API response.

When discussing each API, we will see all request and response parameters in either
table form or JSON format. We will not look at how each of these translates into a
data contract, but it will take a similar form to that previously shown. It is then up
to you to create the contracts needed.

The most important thing to note is that the property names must be identical to
the corresponding JSON property.

Make sure that the code compiles and that you can run the application
before continuing.

Understanding Text

[168]

Correcting spelling errors
The Bing Spell Check API leverages the power of machine learning and statistical
machine translation to train and evolve a highly contextual algorithm for
spellchecking. Doing so allows us to utilize this to perform spellchecking
using context.

A typical spellchecker will follow dictionary-based rule sets. As you can imagine,
this will need continuous updates and expansions.

Using the Bing Spell Check API, we can recognize and correct slang and informal
language. It can recognize common naming errors and correct word-breaking
issues. It can detect and correct words that sound the same, but differ in
meaning and spelling (homophones). It can also detect and correct brands
and popular expressions.

Create a new View in the View folder; call the file SpellCheckView.xaml. Add a
TextBox element for the input query. We will also need two TextBox elements for
the pre- and post-context. Add a TextBox element to show the result and a Button
element to execute the spellcheck.

Add a new ViewModel in the folder named ViewModel; call the file
SpellCheckViewModel.cs. Make the class public, and let it inherit from
the ObservableObject class. Add the following private member:

 private WebRequest _webRequest;

This is the WebRequest class that we created earlier.

We need properties corresponding to our View. This means that we need four
string properties and one ICommand property.

If you have not already done so, register for a free API key at
https://portal.azure.com.

The constructor should look like the following:

 public SpellCheckViewModel()
 {
 _webRequest = new WebRequest ("https://api.cognitive.
microsoft.com/bing/v7.0/spellcheck/?", "API_KEY_HERE");
 ExecuteOperationCommand = new DelegateCommand(
 ExecuteOperation, CanExecuteOperation);
 }

https://portal.azure.com
https://portal.azure.com

Chapter 6

[169]

We create a new object of a WebRequest type, specifying the Bing Spell Check
API endpoint and the API key. We also create a new DelegateCommand for our
ExecuteOperationCommand, ICommand, property.

The CanExecuteOperation property should return true if our input query is filled
in and false otherwise.

To execute a call to the API, we do the following:

 private async void ExecuteOperation(object obj)
 {
 var queryString = HttpUtility.ParseQueryString(string.Empty);

 queryString["text"] = InputQuery;
 queryString["mkt"] = "en-us";
 //queryString["mode"] = "proof";

 if (!string.IsNullOrEmpty(PreContext))
queryString["preContextText"] = PreContext;

 if(!string.IsNullOrEmpty(PostContext))
 queryString["postContextText"] = PostContext;

First, we create a queryString using HttpUtility. This will format the string so
that it can be used in a URI.

As we will be calling the API using a GET method, we need to specify all parameters
in the string. The required parameters are text and mkt, which are the input query
and language, respectively. If we have entered PreContext and/or PostContext,
then we add these parameters as well. We will look at the different parameters in
more detail in a bit.

To make the request, we need to make the following call:

 SpellCheckResponse response = await _webRequest.MakeRequest
<object, SpellCheckResponse>(HttpMethod.Get, queryString.ToString());
 ParseResults(response);
 }

We call MakeRequest on the _webRequest object. As we are making a GET request,
we do not need any request body, and we pass on object as TRequest. We expect
a SpellCheckResponse contract in return. This will contain the resultant data,
and we will look at the parameters in greater detail in a bit.

Understanding Text

[170]

When we have a response, we pass that on to a function to parse it, as shown in the
following code:

 private void ParseResults(SpellCheckResponse response)
 {
 if(response == null || response.flaggedTokens == null ||
response.flaggedTokens.Count == 0)
 {
 Result = "No suggestions found";
 return;
 }

 StringBuilder sb = new StringBuilder();
 sb.Append("Spell checking results:nn");

If we do not have any response, we exit the function. Otherwise, we create a
StringBuilder to format the results, as shown in the following code:

 foreach (FlaggedTokens tokens in response.flaggedTokens)
 {
 if (!string.IsNullOrEmpty(tokens.token))
 sb.AppendFormat("Token is: {0}n", tokens.token);

 if(tokens.suggestions != null || tokens.suggestions.Count !=
0)
 {
 foreach (Suggestions suggestion in tokens.suggestions)
 {
 sb.AppendFormat("Suggestion: {0} - with score: {1}n",
suggestion.suggestion, suggestion.score);
 }
 sb.Append("n");
 }
 }
 Result = sb.ToString();

If we have any corrected spellings, we loop through them. We add all suggestions
to the StringBuilder, making sure that we add the likelihood of the suggestion
being correct. At the end, we make sure that we output the result to the UI.

Chapter 6

[171]

The following table describes all the parameters we can add to the API call:

Parameter Description
text The text that we want to check for spelling and grammar errors.

mode

The current mode of the spellcheck. It can be either of the
following:

• Proof: Spelling corrections for long queries, as typically
used in MS Word.

• Spell: Used for search engine corrections. Can be used for
queries up to nine words long (tokens).

preContextText
The string that gives context to the text. The petal parameter is
valid, but if you specify bike in this parameter, it will be corrected
to pedal.

postContextText
The string that gives context to the text. The read parameter
is valid, but if you specify carpet in this parameter, it may be
corrected to red.

mkt
For proof mode, the language must be specified. It can currently
be en-us, es-es, or pt-br. For spell mode, all language codes are
supported.

A successful response will be a JSON response, containing the following:

 {
 "_type": "SpellCheck",
 "flaggedTokens": [
 {
 "offset": 5,
 "token": "Gatas",
 "type": "UnknownToken",
 "suggestions": [
 {
 "suggestion": "Gates",
 "score": 1
 }]
 }]
 }

The offset is where the word appears in the text and token is the word that contains
the error, while type describes the type of error. The suggestions phrase contains
an array with the suggested correction and the probability of it being correct.

Understanding Text

[172]

When the View and ViewModel have been correctly initialized, as seen in previous
chapters, we should be able to compile and run the example.

An example output of running a spellcheck may give the following result:

Extracting information through textual
analysis
Using the text analytics API, we are able to analyze text. We will cover language
detection, key-phrase analysis, and sentiment analysis. In addition, a new feature is
the ability to detect topics. This does, however, require a lot of sample text, and as
such, we will not go into detail on this last feature.

For all our text-analysis tasks, we will be using a new View. Add a new View into the
View folder called TextAnalysisView.xaml. This should contain a TextBox element
for the input query. It should also have a TextBox element for the result. We will
need three Button elements, one for each detection analysis that we will perform.

We will also need a new ViewModel, so add TextAnalysisViewModel.cs to the
ViewModel folder. In this, we need two string properties, one for each TextBox.
Also add three ICommand properties, one for each of our buttons.

Chapter 6

[173]

If you have not already done so, register for an API key at
https://portal.azure.com.

Add a private member called _webRequest of a WebRequest type. With that in
place, we can create our constructor, as shown in the following code:

 public TextAnalysisViewModel()
 {
 _webRequest = new WebRequest("ROOT_URI","API_KEY_HERE");
 DetectLanguageCommand = new DelegateCommand(DetectLanguage,
CanExecuteOperation);
 DetectKeyPhrasesCommand = new DelegateCommand(DetectKeyPhrases
, CanExecuteOperation);
 DetectSentimentCommand = new DelegateCommand(DetectSentiment,
CanExecuteOperation);
 }

The constructor creates a new WebRequest object, specifying the API endpoint and
API key. We then go on to create the DelegateCommand objects for our ICommand
properties. The CanExecuteOperation function should return true if we have
entered the input query and false otherwise.

Detecting language
The API can detect which language is used in text from over 120 different languages.

This is a POST call, so we need to send in a request body. A request body should
consist of documents. This is basically an array containing a unique id for each
text. It also needs to contain the text itself, as shown in the following code:

 private async void DetectLanguage(object obj)
 {
 var queryString = HttpUtility.ParseQueryString("languages");
 TextRequests request = new TextRequests
 {
 documents = new List<TextDocumentRequest>
 {
 new TextDocumentRequest {id="FirstId", text=InputQue
ry}
 }
 };

 TextResponse response = await _webRequest.
MakeRequest<TextRequests, TextResponse>(HttpMethod.Post, queryString.
ToString(), request);

https://portal.azure.com
https://portal.azure.com

Understanding Text

[174]

We create a queryString specifying the REST endpoint that we want to reach.
Then we go on to create a TextRequest contract, which contains documents.
As we only want to check one piece of text, we add one TextDocumentRequest
contract, specifying an id and the text.

When the request is created, we call MakeRequest. We expect the response to be of
a TextResponse type and the request body to be of a TextRequests type. We pass
along POST as the call method, the queryString, and the request body.

If the response is successful, then we loop through the detectedLanguages. We add
the languages to a StringBuilder, also outputting the probability of that language
being correct. This is then displayed in the UI, as shown in the following code:

 if(response.documents == null || response.documents.Count == 0)
 {
 Result = "No languages was detected.";
 return;
 }

 StringBuilder sb = new StringBuilder();

 foreach (TextLanguageDocuments document in response.documents)
 {
 foreach (TextDetectedLanguages detectedLanguage in document.
detectedLanguages)
 {
 sb.AppendFormat("Detected language: {0} with score {1}n",
detectedLanguage.name, detectedLanguage.score);
 }
 }

 Result = sb.ToString();

A successful response will contain the following JSON:

 {
 "documents": [
 {
 "id": "string",
 "detectedLanguages": [
 {
 "name": "string",
 "iso6391Name": "string",
 "score": 0.0
 }]
 }],

Chapter 6

[175]

 "errors": [
 {
 "id": "string",
 "message": "string"
 }]
 }

This contains an array of documents -, as many as were provided in the
request. Each document will be marked with a unique id and contain an array of
detectedLanguage instances. These languages will have the name, iso6391Name,
and the probability (score) of being correct.

If any errors occur for any document, we will get an array of errors. Each error will
contain the id of the document where the error occurred and the message as a string.

A successful call will create a result similar to the one shown in the
following screenshot:

Extracting key phrases from text
Extracting key phrases from text may be useful if we want our application to know
key talking points. Using this, we can learn what people are discussing in articles,
discussions, or other such sources of text.

This call also uses the POST method, which requires a request body. As with
language detection, we need to specify documents. Each document will need
a unique ID, the text, and the language used. At the time of writing, English,
German, Spanish, and Japanese are the only languages that are supported.

Understanding Text

[176]

To extract key phrases, we use the following code:

 private async void DetectKeyPhrases(object obj)
 {
 var queryString = HttpUtility.ParseQueryString("keyPhrases");
 TextRequests request = new TextRequests
 {
 documents = new List<TextDocumentRequest>
 {
 new TextDocumentRequest { id = "FirstId", text =
InputQuery, language = "en" }
 }
 };

 TextKeyPhrasesResponse response = await _webRequest.
MakeRequest<TextRequests, TextKeyPhrasesResponse>(HttpMethod.Post,
queryString.ToString(), request);

As you can see, it is quite similar to detecting languages. We create a queryString
using keyPhrases as the REST endpoint. We create a request object of
the TextRequests type. We add the documents list, creating one new
TextDocumentRequest. Again, we need the id and text, but we have also
added a language tag, as shown in the following code:

 if (response.documents == null || response.documents?.Count == 0)
 {
 Result = "No key phrases found.";
 return;
 }

 StringBuilder sb = new StringBuilder();

 foreach (TextKeyPhrasesDocuments document in response.documents)
 {
 sb.Append("Key phrases found:n");
 foreach (string phrase in document.keyPhrases)
 {
 sb.AppendFormat("{0}n", phrase);
 }
 }

 Result = sb.ToString();

Chapter 6

[177]

If the response contains any key phrases then we loop through them and output
them to the UI. A successful response will provide the following JSON:

 {
 "documents": [{
 "keyPhrases": [
 "string"],
 "id": "string"
 }],
 "errors": [
 {
 "id": "string",
 "message": "string"
 }]
 }

Here we have an array of documents. Each document has a unique id,
corresponding to the ID in the request. Each document also contains an
array of strings, with keyPhrases.

As with language detection, any errors will be returned as well.

Learning whether a text is positive or negative
Using sentiment analysis, we can detect whether or not a text is positive. If you
have a merchandise website where users can submit feedback, this feature can
automatically analyze whether the feedback is generally positive or negative.

The sentiment scores are returned as a number between 0 and 1, where a high
number indicates a positive sentiment.

As with the previous two analyses, this is a POST call, requiring a request body.
Again, we need to specify the documents, and each document requires a unique
ID, the text, and the language, as shown in the following code:

 private async void DetectSentiment(object obj)
 {
 var queryString = HttpUtility.ParseQueryString("sentiment");
 TextRequests request = new TextRequests
 {
 documents = new List<TextDocumentRequest>
 {
 new TextDocumentRequest { id = "FirstId", text =
InputQuery, language = "en" }

Understanding Text

[178]

 }
 };

 TextSentimentResponse response = await _webRequest.MakeRequest
<TextRequests, TextSentimentResponse>(HttpMethod.Post, queryString.
ToString(), request);

We create a queryString pointing to sentiment as the REST endpoint. The data
contract is TextRequests, containing documents. The document we pass on has
a unique id, the text, and the language:

A call to MakeRequest will require a request body of a TextSentimentRequests
type, and we expect the result to be of a TextSentimentResponse type.

If the response contains any documents, we loop through them. For each document,
we check the score, and output whether or not the text is positive or negative. This
is then shown in the UI, as follows:

 if(response.documents == null || response.documents?.Count == 0)
 {
 Result = "No sentiments detected";
 return;
 }

 StringBuilder sb = new StringBuilder();

 foreach (TextSentimentDocuments document in response.documents)
 {
 sb.AppendFormat("Document ID: {0}n", document.id);

 if (document.score >= 0.5)
 sb.AppendFormat("Sentiment is positive, with a score of{0}
n", document.score);
 else
 sb.AppendFormat("Sentiment is negative with a score of {0}
n", document.score);
 }

 Result = sb.ToString();

A successful response will result in the following JSON:

 {
 "documents": [
 {
 "score": 0.0,

Chapter 6

[179]

 "id": "string"
 }],
 "errors": [
 {
 "id": "string",
 "message": "string"
 }]
 }

This is an array of documents. Each document will have a corresponding id as the
request and the sentiment score. If any errors have occurred, they will be entered
as we saw in the language and key-phrase detection sections.

A successful test can look like the following:

Translating text on the fly
Using the translator text API, you can easily add translations to your application.
The API allows you to automatically detect the language. This can be used to
serve localized content, or to quickly translate content. It also allows us to look up
alternative translations that can be used to translate words into different contexts.

In addition, the translator text API can be used to build customized translation
systems. This means that you can improve the existing models. This can be done
by adding existing human translations related to expressions and vocabulary in
your industry.

Understanding Text

[180]

The translator text API is available as a REST API. We will cover the four endpoints
that you can reach. To use the API, the following root URL should be used:

https://api.cognitive.microsofttranslator.com

Sign up for an API key at Microsoft Azure Portal.

Translating text
To translate text from one language to another, you should call the following
URL path:

/translate

The following parameters must be specified:

To - Language to translate to. Must be specified as two-letter
language code.

This parameter can be specified multiple times.

The request body must contain the text that is to be translated.

A successful call will result in the following JSON output:

[
 {
 "detectedLanguage": {
 "language": "en",
 "score": 1.0
 },
 "translations": [
 "text": "Translated text",
 "to": "en"
]
 }
]

Converting text script
To translate text from one language script (such as Arabic) to another (such as Latin),
you should call the following URL path:

/transliterate

Chapter 6

[181]

The following parameters must be specified:

language - two-letter language code of language used in the language
script.
fromScript - four-letter code for script language you are translating
from.
toScript - four-letter code for script language you are translating
to.

The request body must contain the text that is to be translated.

A successful call will result in the following JSON output:

[
 {
 "text": "translated text"
 "script": "latin"
 }
]

Working with languages
There are two paths that you can use when working with languages. The first one
is used to detect language in a specific text. The second one is used to get a list of
languages supported by the other APIs.

Detecting the language
To detect the language that a certain text uses, you should call the following
URL path:

/detect

The request body must contain the text that is to be translated. No parameters
are needed.

A successful call will result in the following JSON output:

[
 {
 "language": "en",
 "score": 1.0,
 "isTranslationSupported": true,
 "isTransliterationSupported": false,
 "alternatives": [

Understanding Text

[182]

 {
 "language": "pt",
 "score": 0.8,
 "isTranslationSupported": false
 "isTransliterationSupported": false
 },
 {
 "language": "latn",
 "score": 0.7,
 "isTranslationSupported": true
 "isTransliterationSupported": true
 }
]
 }
]

Getting supported languages
To get a list of supported languages, you should call the following URL path:

/languages

No parameters or body are required for this call.

A successful call will result in the following JSON output:

[
 "translation": {
 ...
 "en": {
 "name": "English",
 "nativeName": "English",
 "dir": "ltr"
 },
 ...
 },
 "transliteration": {
 "ar": {
 "name": "Latin",
 "nativeName": "",
 "scripts": [
 {
 "code": "Arab",
 "name": "Arabic",
 "nativeName": "",
 "dir": "rtl",

Chapter 6

[183]

 "toScripts": [
 {
 "code:" "Latn",
 "name": "Latin",
 "nativeName": "",
 "dir": "ltr"
 }
]
 },
 {
 "code": "Latn",
 "name": "Latin",
 "nativeName": "",
 "dir": "ltr",
 "toScripts": [
 {
 "code:" "Arab",
 "name": "Arabic",
 "nativeName": "",
 "dir": "rtl"
 }
]
 }
]
 },
 ...
 },
 "dictionary": {
 "af": {
 "name": "Afrikaans",
 "nativeName": "Afrikaans",
 "dir": "ltr",
 "translations": [
 {
 "name": "English",
 "nativeName": "English",
 "dir": "ltr",
 "code": "en"
 }
 ...
]
 }
 ...
 }
]

Understanding Text

[184]

As you can see, the two-letter country code is the key for each entry. You can also
find the four-letter code for each transliterate language. This API path can be used
as a basis for the other API paths.

Summary
In this chapter, we have focused on the language APIs. We started by creating the
parts that are needed to execute the API calls to the different services. Following this,
we looked at the Bing Spell Check API. We moved on to more analytical APIs, where
we learned how to detect languages, key phrases, and sentiment. Finally, we looked
into how we can use the translator text API.

The next chapter will take us from language APIs to knowledge APIs. In the
following chapter, we will learn how to recognize and identify entities based on
context. In addition, we will learn how to use the recommendations API.

[185]

Building Recommendation
Systems for Businesses

"By leveraging Azure Machine Learning and the Recommendations API,
we have launched a new Personalized Commerce Experience for retailers
that grows shopper conversion and engagement on any channel."

 – Frank Kouretas, Chief Product Officer at Orckestra

In the previous chapter, we covered the remaining language APIs. In this chapter, we
will look at the Recommendations Solution template. This is a template for Microsoft
Azure that contains the resources required to run Recommendations Solution. This
is a solution well suited for e-commerce applications, where you can recommend
different items based on different criteria. Recommending items in an online store is
a process that can be very time-consuming if it is done by following a rule set. The
Recommendations Solution allows us to utilize the power of machine learning to get
good recommendations, potentially increasing the number of sales.

This chapter will cover the following topics:

• Deploying the Recommendations Solution template
• Training the recommendation model
• Consuming recommendations

Building Recommendation Systems for Businesses

[186]

Providing personalized recommendations

If you run an e-commerce site, a feature that is nice for your customers to have is
recommendations. Using the Recommendation Solution, you can easily add this.
Utilizing Microsoft Azure Machine Learning, the API can be trained to recognize
items that should be recommended.
There are two common scenarios for recommendations, as follows:

• Item-to-Item Recommendations (I2I): I2I is the scenario where certain items
are often viewed after other items. Typically, this will be in the form of people
who visited this item also visited this other item.

• Customer-to-Item Recommendations (U2I): U2I is the scenario where you
utilize a customer's previous actions to recommend items. If you sell movies,
for example, then you can recommend other movies based on a customer's
previous movie choices.

The general steps to use the Recommendation Solution are as follows:

1. Deploy the template in Azure
2. Import the catalog data (the items in your e-commerce site)
3. Import usage data
4. Train a recommendation model
5. Consume recommendations

If you have not already done so, you should sign up for an API key at https://
portal.azure.com.

https://portal.azure.com
https://portal.azure.com

Chapter 7

[187]

Deploying the Recommendation Solution
template in Azure
To deploy the Recommendations Solution, you must have an active Microsoft Azure
subscription.

Head over to https://github.com/Microsoft/Product-Recommendations/tree/
master/deploy to start the deployment. Click on Deploy to Azure, as shown in the
following screenshot:

https://github.com/Microsoft/Product-Recommendations/tree/master/deploy
https://github.com/Microsoft/Product-Recommendations/tree/master/deploy

Building Recommendation Systems for Businesses

[188]

This will take you to the following page in Microsoft Azure:

Chapter 7

[189]

Enter the required information, accept the terms and conditions, and click on
Purchase. This will start the process of deploying the required resources for the
Recommendations Solution.

After a few minutes, the deployment is done. You are now ready to upload data to
train a model.

Importing catalog data
With the solution deployed, we can add catalog data. This is where you would
typically add items from your database. Items need to be uploaded as files. The files
need to be in CSV format.

The following table describes the data that is required for each item in your catalog:

Name Description
Item ID A unique identifier for a given item
Item name The name of the item
Item
category

The category for the item, such as hardware, software, book genre,
and so on

In addition, there are a few data fields that are optional. These are described in the
following table:

Name Description
Description A description of the item
Feature list A comma-separated feature list that can enhance recommendations

A file that has all the data included may have items that look like the following:

C9F00168, Kiruna Flip Cover, Accessories, Description of item,
compatibility = lumia, hardware type = mobile

It is typically better to add features as this improves the recommendations. Any new
item that has little usage is unlikely to be recommended if no features exist.

Features should be categorical. This means that a feature can be a price range.
A price alone would not serve as a good feature.

You can add up to 20 features per item. When a catalog containing features for items
is uploaded, you need to perform a rank build. This will rank each feature, where
features of a higher ranking will typically be better to use.

Building Recommendation Systems for Businesses

[190]

The code example for this chapter contains a sample catalog. We will use this for the
following example. Alternatively, you can download some data from Microsoft from
http://aka.ms/RecoSampleData. We want to use the data from MsStoreData.zip.

With the files downloaded, we can upload the catalog to our storage. This can be
done by heading to your newly created storage account and creating a new blob
container for the catalog, as shown in the following screenshot:

Click on Upload, browse to the sample files you downloaded, and choose the
catalog.csv file. This will upload the catalog.

Note that the catalog file is not required, but it is recommended that you
upload it in order to supply it to the model.
The maximum number of items in a catalog is 100,000. Any given catalog
file cannot be larger than 200 MB. If your file is larger, and you still have
more items, you can upload several files.

Importing usage data
The next step we need to make is to upload usage data. This is a file describing
all the transactions from your customers in the past. The file contains rows, with
transactions, where each transaction is a comma-separated line containing data.

The required data fields are as follows:

Name Description
User ID A unique identifier for each customer
Item ID A unique identifier for items that correlate to the catalog
Time The time of the transaction

http://aka.ms/RecoSampleData
http://aka.ms/RecoSampleData

Chapter 7

[191]

In addition, it is possible to have a field called Event. This describes the type of
transaction. The allowed values for this field are Click, RecommendationClick,
AddShopCart, RemoveShopCart, and Purchase.

Given the preceding example from the catalog, a line in the usage file may look as
follows:

 00030000D16C4237, C9F00168, 2015/08/04 T 11:02:37, Purchase

The maximum file size for a usage file is 200 MB.

The quality of recommendations relies on the amount of usage data. Typically, you
should have about 20 transactions registered per item. This means that if you have
100 items in the catalog, you should aim for 2,000 transactions in the usage file.

Note that the current maximum number of transactions that the API accepts is
5 million. If new transactions are added above this maximum, the oldest data
will be deleted.

Again, you can find an example usage file at http://aka.ms/RecoSampleData.
Create another blob container called usage and click on Upload. Upload all the
usage files from the sample folder.

Training a model
With the catalog and usage data in place, it is time to train a model.

Starting to train
To start a training process, we need to make an API call to an endpoint on the newly
created app service. This can be done using a tool, such as Postman, or through your
own application. We will use Postman for the purposes of this book.

To download Postman, please visit https://www.getpostman.com/.

The training process can be started by sending a POST request to the following URL:

https://<service_name>.azurewebsites.net/api/models

The request must include a header, x-api-key, with your API key. It must also
include another header, Content-Type, which should be set to application/json.

http://aka.ms/RecoSampleData
https://www.getpostman.com/

Building Recommendation Systems for Businesses

[192]

In addition, the request must contain a body containing the following:

Property Mandatory Description
description No Textual description.

blobContainerName Yes
Name of the blob container where
the catalog and usage data are
stored.

usageRelativePath Yes

Relative path to either a virtual
directory that contains the usage
file(s) or a specific usage file to be
used for training.

catalogFileRelativePath No Relative path to the catalog file.

evaluationUsageRelativePath No

Relative path to either a virtual
directory that contains the usage
file(s) or to a specific usage file to be
used for evaluation.

supportThreshold No

How conservative the model
is, measured in the number of
cooccurrences of items to be
considered for modeling.

cooccurrenceUnit No Indicates how to group usage events
before counting cooccurrence.

similarityFunction No
Defines the similarity function to be
used. Can be Jaccard, Cooccurrence,
or Lift.

enableColdItemPlacement No

This will be either true or false.
Indicates whether recommendations
should push cold items via feature
similarity.

enableColdToColdRecommendations No

This will be either true or false.
Indicates whether or not the
similarity between pairs of cold
items should be calculated.

enableUserAffinity No

This will be either true or false.
Defines whether the event type and
time of event should be considered
as inputs to the result.

enableBackfilling No

This will be either true or false.
This will backfill with popular items
if not enough relevant items are
returned.

allowSeedItemsInRecommendations No
This will be either true or false.
Determines whether input items can
be returned as results.

Chapter 7

[193]

Property Mandatory Description

decayPeriodInDays No
The decay period in days. The longer
the time since an event has occurred,
the less weight the event will have.

enableUserToItemRecommendations No

This will be either true or false.
If true, the user ID will be taken
into account when personalized
recommendations are requested.

A successful call may yield the following result:

The id field returned can be used to check the training status.

Verifying the completion of training
Using the ID returned in the previous request, we can now run a GET request to the
following endpoint:

https://<service_name>.azurewebsites.net/api/models/<model_id>

Building Recommendation Systems for Businesses

[194]

This request requires a header, x-api-key, containing your API key. A successful
request may give the following response:

Response of GET request

As you can see, a modelStatus field is presented. Once this is Completed, the model
is trained and ready to be used. You will also be presented with statistics, such as the
duration of training, among other details.

If you prefer to use a user interface for the model training, you can visit
https://<your_service>.azurewebsites.net/ui.

Chapter 7

[195]

Consuming recommendations
To use the recommendation models we just created, we will create a new example
application. Create this using the MVVM template we created previously.

At the time of writing, there is no client package for the recommendations API. This
means that we need to rely on web requests, as we saw in Chapter 6, Understanding
Text. To speed up the development time, copy the WebRequest.cs file from the
example code in Chapter 6, Understanding Text. Paste this file into the Model folder,
and make sure that you update the namespace.

Remember to add references to System.Web and System.Runtime.
Serialization.

As there is no need for much UI, we are going to add everything in the MainView.
xaml file. We are going to need two ComboBox elements. These will list our
recommendation models and catalog items. We also need a Button element
to get the recommendations and a TextBox element to show the resultant
recommendations.

The corresponding ViewModel, MainViewModel.cs, will need properties
to correspond to the UI elements. Add an ObservableCollection of a
RecommendationModel type to hold our models. We will look at the type in a bit.
We need a property of a RecommendationModel type to hold the selected model.
Add an ObservableCollection property of a Product type with a corresponding
Product property for the available and selected properties. We will also need a
string property for the results and an ICommand property for our button.

Add a private member of a WebRequest type so that we can call the API.

Add a new file called Product in the Model folder. To use the items from our catalog,
we will load the catalog file into the application, creating a Product for each item.
Ensure that Product looks as follows:

 public class Product {
 public string Id { get; set; }
 public string Name { get; set; }
 public string Category { get; set; }
 public Product(string id, string name, string category) {
 Id = id;
 Name = name;
 Category = category;
 }
 }

Building Recommendation Systems for Businesses

[196]

We need the Id of an item, as well as the Name and the Category.

The constructor should create a WebRequest object, as shown in the following code:

 public MainViewModel()
 {
 _webRequest = new WebRequest ("https://<YOUR_WEB_SERVICE>.
azurewebsites.net/api/models/", "API_KEY_HERE");
 RecommendCommand = new DelegateCommand(RecommendBook,
CanRecommendBook);

 Initialize();
 }

When we create the WebRequest object, we specify the recommendation endpoint
and our API key. The RecommendCommand phrase is the ICommand object, as a
DelegateCommand. We need to specify the action to be executed and the conditions
under which we are allowed to execute the command. We should be allowed to
execute the command if we have selected a recommendation model and a product.

The Initialize phrase will make sure that we fetch our recommendation models
and products, as shown in the following code:

 private async void Initialize() {
 await GetModels();
 GetProducts();
 }

The GetModels method will make a call to the API, as shown in the following code:

 private async Task GetModels()
 {
 List<RecommandationModel> models = await _webRequest.
GetModels(HttpMethod.Get);

This call is a GET request, so we specify this in GetModels. A successful call should
result in a JSON response that we then deserialize into a RecommendationModel
object. This is a data contract, so add a file called Models.cs in a folder called
Contracts.

A successful result will give the following output:

[
 {
 "id": "string",
 "description": "string",
 "creationTime": "string",

Chapter 7

[197]

 "modelStatus": "string"
 }
 {...}
 {...}
]

We have an array of models. Each item in this array has an id, name, description,
createdDateTime, activeBuildId, and catalogDisplayName. Make sure that the
RecommendationModels class contains this data.

If the call succeeds, we add the models to the ObservableCollection of available
models, as shown in the following code:

 foreach (RecommandationModel model in models) {
 AvailableModels.Add(model);
 }
 SelectedModel = AvailableModels.FirstOrDefault();
 }

When all items are added, we set the SelectedModel to the first available option.

To add the items from our catalog, we need to read from the catalog file. In the
example code provided with the book, this file is added to the project and copied to
the output directory. The GetProducts method will look as follows:

 private void GetProducts() {
 try {
 var reader = new StreamReader (File.OpenRead("catalog.
csv"));

 while(!reader.EndOfStream) {
 string line = reader.ReadLine();
 var productInfo = line.Split(',');

 AvailableProducts.Add(new Product(productInfo[0],
productInfo[1], productInfo[2]));
 }

 SelectedProduct = AvailableProducts.FirstOrDefault();
 }
 catch(Exception ex) {
 Debug.WriteLine(ex.Message);
 }
 }

Building Recommendation Systems for Businesses

[198]

This is a basic file operation, reading in each line from the catalog. For each item,
we get the required information, creating a Product for each item. This is then
added to the AvailableProducts in the ObservableCollection property, and the
SelectedProduct is the first available.

Now that we have our recommendation models and our products, we can execute
the recommendation request, as shown in the following code:

 private async void RecommendProduct(object obj)
 {
 List<RecommendedItem> recommendations = await _
webRequest.RecommendItem(HttpMethod.Get, $"{SelectedModel.id}/
recommend?item={SelectedProduct.Id}");

The call to get the recommendations is a GET request. This requires us to add
itemIds.

The itemIds parameter must be the ID of a selected product.

We call the RecommendItem method on the _webRequest object. This is a GET
request, and we need to specify the ID of the SelectedModel in the query string. We
also need to add a bit to the query string so that we reach the correct endpoint. A
successful response will result in JSON output, which will look as follows:

[
 {
 "recommendedItemId": "string",
 "score": "float"
 },
 {...}
 {...}
]

The result consists of an array of objects. Each item will have a recommendedItemId
and a score. The score gives an indication of how likely a customer is to want the
given item.

This result should be deserialized into a list of data contracts of a RecommandedItem
type, so make sure you add this in the Contracts folder.

When we have made a successful call, we want to display this in the UI, as follows:

 if(recommendations.Count == 0) {
 Recommendations = "No recommendations found";

Chapter 7

[199]

 return;
 }
 StringBuilder sb = new StringBuilder();
 sb.Append("Recommended items:\n\n");

First, we check to see whether we have any recommendations. If we do not have any,
we will not move on. If we do have any items, we create a StringBuilder to format
our output, as follows:

 foreach(RecommendedItem recommendedItem in recommendations) {
 sb.AppendFormat("Score: {0}n", recommendedItem.score);
 sb.AppendFormat("Item ID: {0}\n", item.id);

 sb.Append("n");
 }
 Recommendations = sb.ToString();
 }

We loop through all the recommendedItems. We output the score and the id. This
will be printed in the UI.

A successful test run may give the following result:

Building Recommendation Systems for Businesses

[200]

There are a few special cases to note:

• If the item list contains a single item that does not exist in the catalog, then an
empty result is returned

• If the item list contains some items that are not in the catalog, then these are
removed from the query

• If the item list contains only cold items (items that have no usage data
connected to them), then the most popular recommendation is returned

• If the item list contains some cold items, then recommendations are returned
for the other items

Recommending items based on prior activities
To make recommendations based on user activity, we need a list of users. As such a
list would be too cumbersome to create just for an example, we will only look at the
steps and parameters that are required to make this kind of recommendation.

The endpoint for this usage is a bit different, as it is another GET call. In code, it
would look as follows:

 $"{SelectedModel.id}/recommend/user?{queryString.ToString()}"

The parameters in the query string are as follows:

Parameter Description
userId (required) A unique identifier of a given user.
numberOfResults
(required) The number of recommendations returned.

itemsIds (optional) A list or single ID of the selected item(s).
includeMetadata
(optional) If true, then the item's metadata will be included.

buildId (optional) A number identifying the build we want to use. If none is
specified, then the active build is used.

A successful call will result in the same JSON output as the other recommendation
models. Recommended items will, of course, be based on users' past activities.

Note that, to be able to use this, U2I must be set to true when creating a
model build.

Chapter 7

[201]

Summary
In this chapter, we dived into the recommendations API. We learned how to set up
recommendation models using existing catalog and usage data. Using these models,
we learned how to utilize these in a simple example application.

In the next chapter, we will start with the knowledge APIs. We will learn how to
structure natural language queries and evaluate query expressions. In addition, we
will learn how to add autocompletion to natural language queries.

[203]

Querying Structured
Data in a Natural Way

In the previous chapter, we learned how we can use the current context to extend
our knowledge on a certain topic. Throughout this chapter, we will continue
discussing about the knowledge APIs. More specifically, we will learn how to
explore relationships between academic papers and journals. We will see how we
can interpret natural language queries, and retrieve query expressions. Using these
expressions, we will learn how to find academic entities. We will then focus more on
how to set up this kind of service on your own. At the end of this chapter, we will
look at QnA Maker to see how we can create FAQ services from existing content.

This chapter will cover the following topics:

• Interpreting natural-language user queries using Project
Academic Knowledge

• Assisting the user with queries using autocomplete features
• Using autocomplete queries to retrieve academic entities
• Calculating the distribution of academic entities from queries
• Hosting the Project Knowledge Exploration Service with your own schema
• Creating an FAQ service from existing content using QnA Maker

Querying Structured Data in a Natural Way

[204]

Tapping into academic content using the
academic API
Microsoft Academic Graph (MAG) is a knowledge base for web-scale,
heterogeneous entity graphs. Entities model scholarly activities, and contain
information such as the field of study, author(s), institution, and more.

Data contained in MAG is indexed from the Bing web index. As this is continuously
indexed, the data is always up to date.

Using the Project Academic Knowledge API, we can tap into this knowledge base.
This API allows us to combine search suggestions, research paper graph search
results, and histogram distributions. The API enables a knowledge-driven and
interactive dialog.

When a user searches for research papers, the API can provide query completion.
It may suggest queries based on the input. With a complete query, we can evaluate
a query expression. This will retrieve a set of matching paper entities from the
knowledge base.

Setting up an example project
To test Project Academic Knowledge, we will first want to create a new example
project. We will create this from the MVVM template created in Chapter 1, Getting
Started with Azure Cognitive Services.

Project Academic Knowledge does not have any client packages available. This
means that we need to call the API ourselves. Copy the WebRequest.cs file from the
Model folder in the smart house application and paste it into the Model folder of the
newly created project. Make sure that you correct the namespace.

To be able to compile this, we will need to add references to System.Web and
System.Runtime.Serializable. We will also be working with JSON, so go ahead
and add the Newtonsoft.Json package through the NuGet package manager.

As this will be the only API tested in this sample project, we can add UI elements in
the MainView.xaml file. Open this file now.

Our View should have a TextBox element for our input query. It should have a
ComboBox element to list the suggested query expressions. We need three Button
elements, one for Interpret, one for Evaluate, and one for Histogram, which are
all functions we will be executing. Last but not least, we need a TextBox element to
display our results.

Chapter 8

[205]

In the MainViewModel.cs file, we will need to add corresponding properties. Add
three string properties, one for the input query, one for the results, and one for the
selected query expression. Add an ObservableCollection property of the string
type for our available query expressions. We also need three ICommand properties,
one for each of our buttons.

Add a private member for our WebRequest object. Make the constructor look like
the following:

 public MainViewModel()
 {
 _webRequest = new WebRequest("https://api.labs.cognitive.
microsoft.com/academic/v1.0/",
 "API_KEY_HERE");

 InterpretCommand = new DelegateCommand(Interpret,
CanInterpret);
 EvaluateCommand = new DelegateCommand(Evaluate,
CanExecuteCommands);
 CalculateHistogramCommand = new DelegateCommand
(CalculateHistogram,
 CanExecuteCommands);
 }

If you have not already done so, sign up for an API key at https://
labs.cognitive.microsoft.com/en-us/project-academic-
knowledge and click the Subscribe button.

The CanInterpret parameter should return true if we have entered any text into
the query textbox. The CanExecuteCommands parameter should return true if we
have selected a query expression. We will cover Interpret, Evaluate, and the
CalculateHistogram parameters in the upcoming sections.

Make sure that the application compiles and runs before continuing.

Interpreting natural language queries
The query expressions that the API uses to evaluate a query are not in a natural
language format. To ensure that users can make queries in a natural way, we need
to interpret their input.

https://labs.cognitive.microsoft.com/en-us/project-academic-knowledge
https://labs.cognitive.microsoft.com/en-us/project-academic-knowledge
https://labs.cognitive.microsoft.com/en-us/project-academic-knowledge

Querying Structured Data in a Natural Way

[206]

When calling the Interpret feature of the API, it accepts a query string. This will
be returned and formatted to reflect the user intent using academic grammar. In
addition, this feature can be called as the user is writing, to provide an interactive
experience.

The request is a GET request, as shown in the following code:

 private async void Interpret(object obj)
 {
 var queryString = HttpUtility.ParseQueryString(string.Empty);

 queryString["query"] = InputQuery;
 queryString["complete"] = "1";
 //queryString["count"] = "10";
 //queryString["offset"] = "0";
 //queryString["timeout"] = "1000";
 //queryString["model"] = "latest";

We start the call by creating a queryString variable. The parameters we can input
are specified in the following table:

Parameter Description
query
(required) The query from the user.

complete
(optional)

If this is set to 1, then the service will return suggestions using the query as a
prefix. A value of 0 means there will be no autocomplete.

count
(optional) The maximum number of interpretations to return.

offset
(optional)

The index of the first interpretation. This is useful if a lot of results are
expected and you need to add pagination.

timeout
(optional)

The timeout specified in milliseconds. Only results found before this limit
will be returned.

model
(optional)

The name of the model you want to query. This defaults to the latest
model.

We call the API to get interpretations, as shown in the following code:

 InterpretResponse response = await _webRequest.MakeRequest<object,
 InterpretResponse>(HttpMethod.Get, $"interpret?{queryString.
ToString()}");

 if (response == null || response.interpretations.Length == 0)
 return;

Chapter 8

[207]

As this is a GET request, we do not need to specify any request bodies. We do,
however, expect a result to be serialized into an InterpretResponse object.
This is a data contract, containing properties from the result.

A successful call to the API will result in a JSON response, which looks as follows:

 {
 "query": "papers by jaime", "interpretations": [
 {
 "prob": 2.429e-006,
 "parse": "<rule id="#GetPapers"> papers by <attr
name="academic#AA.AuN">
 jaime teevan </attr></rule>",
 "rules": [
 {
 "name": "#GetPapers",
 "output": {
 "type": "query",
 "value": "Composite(AA.AuN=='jaime teevan')"
 }
 }]
 }]
 }

The result contains the original query. It also contains an array with
interpretations. Each item in this array consists of the data shown in the
following table:

Data field Description

prob
This is the probability of the current interpretation being correct. The
scale goes from 0 to 1, where 1 is the highest.

parse This is an XML string showing interpretations for each part of
the string.

rules This is an array with one or more rules defined. There will
always be one rule for the academic API.

rules[x].name This is the name of the current rule.
rules[x].output This is the output of the current rule.
rules[x].output.
type

This is the type of the rule output. This will always be query for the
academic API.

rules[x].output.
value

This is the output value for the rule. This will be a query
expression string.

Querying Structured Data in a Natural Way

[208]

Create the InterpretResponse data contract based on the preceding JSON output.
We are interested in the last data field, rules[x].output.value. This is the query
expression string, which we will use to evaluate queries.

When the API call has succeeded, we want to update the ObservableCollection
class as to the available query expressions, using the following code:

 ObservableCollection<string> tempList = new
ObservableCollection<string>();

 foreach (Interpretation interpretation in response.
interpretations)
 {
 foreach (Rule rule in interpretation.rules) {
 tempList.Add(rule.output.value);
 }
 }

 AvailableQueryExpressions = tempList;
 QueryExpression = AvailableQueryExpressions.FirstOrDefault();

We loop through all interpretations, adding the outputvalue from a rule to our
AvailableQueryExpressions.

Finally, we set the selected QueryExpression as the first one available. This is just
for our own convenience.

A successful test run can generate the following results:

Chapter 8

[209]

An unsuccessful call will produce an error response code. The response codes that
can be generated are as follows:

Response code Description
400 Bad argument; request parameter is missing
401 Invalid subscription key
403 The call volume quota has been exceeded
404 The requested resources are not found
500 Internal server error

Finding academic entities in query
expressions
Now that we have a query expression available, we can retrieve a set of academic
entities using the Evaluate endpoint. This is a GET request, where we need to specify
the attributes we want returned for each entity. We will cover the available attributes
later.

We start by creating a query string, as shown in the following code:

 private async void Evaluate(object obj)
 {
 string queryString = $"expr={QueryExpression} &
 attributes=Id,Ti,Y,D,CC,AA.AuN";

 //queryString += "&model=latest";
 //queryString += "&count=10";
 //queryString += "&offset=0";5
 //queryString += "&orderby=name:asc";

The parameters we can add are described in the following table:

Parameter Description
expr (required) This is the query expression found in the Interpret call.
attributes
(optional)

This is a comma-separated list of attributes to be included in the
response. Each attribute is case-sensitive.

model (optional) This is the model you wish to use for a query. This defaults to the
latest model.

count (optional) This is the number of entities to return.
offset
(optional)

This is the index of the first result to return; it can be useful for
pagination purposes.

Querying Structured Data in a Natural Way

[210]

Parameter Description
orderby
(optional) This specifies the order in which to sort the entities.

Note that, while the attributes parameter is optional, you should specify which
attributes you want. If none are specified, only the entity ID is returned.

We call the API, as follows:

 EvaluateResponse response = await _webRequest.
MakeRequest<object,
 EvaluateResponse>(HttpMethod.Get, $"evaluate?{queryString}");

 if (response == null || response.entities.Length == 0)
 return;

As this is a GET request, we do not need any request bodies. With a successful call,
we expect an EvaluateResponse object in return. This is a data contract, which will
be deserialized from the JSON response.

A successful response will give a JSON response like the following code (depending
on the attributes specified):

 {
 "expr": "Composite(AA.AuN=='jaime teevan')",
 "entities": [
 {
 "prob": 2.266e-007,
 "Ti": "personalizing search via automated analysis of
interests and
 activities",
 "Y": 2005,
 "CC": 372,
 "AA": [
 {
 "AuN": "jaime teevan",
 "AuId": 1968481722
 },
 {

Chapter 8

[211]

 "AuN": "susan t dumais",
 "AuId": 676500258
 },
 {
 "AuN": "eric horvitz",
 "AuId": 1470530979
 }]
 }]
 }

The response contains the query expression we used. It also contains an array of
entities. Each item in this array will contain the probability of it being correct. It
will also contain all the attributes that we specified, in the form of either string or
numeric values. It can also be in the form of objects, which we will need to have data
contracts for.

For our request, we specified some attributes. These were the entity ID, title, year
and date of publication, citation count, and author name. Knowing these attributes,
we can use the following code to output the result:

 StringBuilder sb = new StringBuilder();
 sb.AppendFormat("Expression {0} returned {1} entities\n\n",
response.expr,
 response.entities.Length);

 foreach (Entity entity in response.entities)
 {
 sb.AppendFormat("Paper title: {0}\n\tDate: {1}\n", entity.Ti,
entity.D);

 sb.Append("Authors:\n");
 foreach (AA author in entity.AA)
 {
 sb.AppendFormat("\t{0}\n", author.AuN);
 }

 sb.Append("\n");
 }
 Results = sb.ToString();

Querying Structured Data in a Natural Way

[212]

A successful call can give the following output:

Any error responses will produce response codes, as described previously.

Calculating the distribution of attributes
from academic entities
Another feature of the academic API is the ability to calculate the distribution
of attribute values for a set of paper entities. This can be done by calling the
calchistogram API endpoint.

Chapter 8

[213]

This is a GET request, so we start by creating a query string, as follows:

 string queryString = $"expr={QueryExpression}&attributes=Y,F.FN";

 //queryString += "&model=latest";
 //queryString += "&count=10";
 //queryString += "&offset=0";

The parameters we can specify are the same as with Evaluate, except that we do not
have the orderby parameter. For this call, we want to get the year of publication (Y)
and the name of the field of study (F.FN).

We make the call to the API without specifying any request bodies, as shown in the
following code:

 HistogramResponse response = await _webRequest.MakeRequest<object,
 HistogramResponse>(HttpMethod.Get, $"calchistogram?{queryStri
ng}");

 if (response == null || response.histograms.Length == 0)
 return;

If the call succeeds, we expect a HistogramResponse object in return. This is a data
contract, which should contain the data from the JSON response.

A successful request should give the following JSON response (depending on the
requested attributes):

 {
 "expr": "And(Composite(AA.AuN=='jaime teevan'),Y>2012)",
 "num_entities": 37,
 "histograms": [
 {
 "attribute": "Y",
 "distinct_values": 3,
 "total_count": 37,
 "histogram": [
 {
 "value": 2014,
 "prob": 1.275e-07,
 "count": 15
 },
 {
 "value": 2013,
 "prob": 1.184e-07,
 "count": 12

Querying Structured Data in a Natural Way

[214]

 },
 {
 "value": 2015,
 "prob": 8.279e-08,
 "count": 10
 }]
 },
 {
 "attribute": "F.FN",
 "distinct_values": 34,
 "total_count": 53,
 "histogram": [
 {
 "value": "crowdsourcing",
 "prob": 7.218e-08,
 "count": 9
 },
 {
 "value": "information retrieval",
 "prob": 4.082e-08,
 "count": 4
 },
 {
 "value": "personalization",
 "prob": 2.384e-08,
 "count": 3
 },
 {
 "value": "mobile search",
 "prob": 2.119e-08,
 "count": 2
 }]
 }]
}

The response contains the original query expression that we used. It will give us
a count of the number of matching entities. An array of histograms will also be
present. This will contain an item for each of the attributes we requested. The data
for each item is described in the following table:

Chapter 8

[215]

Data field Description
attribute This is the attribute name.

distinct_values This is the number of distinct values that match the entities for this
attribute.

total_count This is the total number of value instances among the matching
entities for this attribute.

histogram This is an array containing the histogram data for this attribute.
histogram[x].
value This is the value for the current histogram.

histogram[x].
prob

This is the probability that matching entities have this attribute
value.

histogram[x].
count This is the number of matching entities that have this value.

With a successful response, we loop through the data, presenting it in the UI using
the following code:

 StringBuilder sb = new StringBuilder();

 sb.AppendFormat("Totalt number of matching entities: {0}\n",
 response.num_entities);

 foreach (Histogram histogram in response.histograms)
 {
 sb.AppendFormat("Attribute: {0}\n", histogram.attribute);
 foreach (HistogramY histogramY in histogram.histogram)
 {
 sb.AppendFormat("\tValue '{0}' was found {1} times\n",
histogramY.value,
 histogramY.count);
 }

 sb.Append("\n");
 }
 Results = sb.ToString();

Querying Structured Data in a Natural Way

[216]

A successful call gives us the following result:

An unsuccessful API call will return an error, containing a response code. The
potential response codes are the same as described in the previous section on the
Interpret feature.

Entity attributes
A rather important element of this API is the usage of attributes. You will most
definitely want to get some data from the query, but not all of the data.

We have previously seen how to specify attributes in each request. The following
table describes all available attributes. Please make sure that all attributes specified in
a request are correct per casing:

Chapter 8

[217]

Attribute Description
Id Entity ID
Ti Paper title
Y Paper year
D Paper date
CC Citation count
ECC Estimated citation count
AA.AuN Author name
AA.AuId Author ID
AA.AfN Author affiliation name
AA.AfId Author affiliation ID
F.FN Name of field of study
F.Fid Field of study ID
J.JN Journal name
J.JId Journal ID
C.CN Conference series name
C.Cid Conference series ID
Rid Reference ID
W Words from the paper title/abstract for full text search
E Extended metadata

The extended metadata is described in the following table:

Attribute Description
DN Display name of the paper
D Description
S Sources (web sources of the paper, sorted by static rank)
S.Ty Source type (HTML/text/PDF/DOC/PPT/XLS/PS)
S.U Source URL
VFN Venue full name - full name of journal or conference
VSN Venue short name - short name of the journal or conference
V Journal volume
I Journal issue
FP First page of paper
LP Last page of paper
DOI Digital object identifier

Querying Structured Data in a Natural Way

[218]

Creating the backend using the
Knowledge Exploration Service
The Knowledge Exploration Service (KES) is, in some ways, the backend for
the academic API. It allows us to build a compressed index from structured data,
authoring grammar to interpret natural language.

To get started with the KES, we need to install the service locally.

To download the KES installer, go to https://www.microsoft.com/
en-us/download/details.aspx?id=51488.

With the installation comes some example data, which we will use.

The steps required to have a working service are as follows:

1. Define a schema
2. Generate data
3. Build the index
4. Author the grammar
5. Compile the grammar
6. Host the service

Defining attributes
The schema file defines the attribute structure in our domain. When we previously
discussed the academic API, we saw a list of different entity attributes, which we
could retrieve through the queries. This is defined in a schema.

If you open the Academic.schema file in the Example folder where the KES is
installed, you will see the attributes defined. We have a title, year, and keyword,
which are basic attribute types. In addition, we have a Composite attribute for the
author. This attribute contains more attributes related to the author.

Each attribute will support all attribute operations. There may be cases where this is
not desired. Explicitly defining the operations for a given attribute may reduce the
index size. In the case of the author ID, we just want to be able to check whether it is
equal to something, which we can achieve by adding the following:

 {"name":"Author.Id", "type":"Int32", "operations":["equals"]}

https://www.microsoft.com/en-us/download/details.aspx?id=51488
https://www.microsoft.com/en-us/download/details.aspx?id=51488

Chapter 8

[219]

Adding data
With a schema defined, we can add some data. The example contains a file, called
Academic.data, which holds all the example data. Open the file to learn what the
data can look like.

Each line in the data file specifies the attribute values for an object. It can also contain
a logprob value, which will indicate the return order of matching objects.

Building the index
With the attribute schema and data file in place, we can build the compressed binary
index. This will hold all our data objects.

Using our example files, we can build the index by running the following command:

kes.exe build_index Academic.schema Academic.data Academic.index

A successful execution should produce the Academic.index file, which we will use
when we are hosting the service.

When running the command, the application will continuously output the status,
which can look like the following:

 00:00:00 Input Schema: \Programs\KES\Example\Academic.schema

 00:00:00 Input Data: \Programs\KES\Example\Academic.data

 00:00:00 Output Index: \Programs\KES\Example\Academic.index

 00:00:00 Loading synonym file: Keyword.syn

 00:00:00 Loaded 3700 synonyms (9.4 ms)

 00:00:00 Pass 1 started

 00:00:00 Total number of entities: 1000

 00:00:00 Sorting entities

 00:00:00 Pass 1 finished (14.5 ms)

 00:00:00 Pass 2 started

 00:00:00 Pass 2 finished (13.3 ms)

 00:00:00 Processed attribute Title (20.0 ms)

 00:00:00 Processed attribute Year (0.3 ms)

 00:00:00 Processed attribute Author.Id (0.5 ms)

 00:00:00 Processed attribute Author.Name (10.7 ms)

 00:00:00 Processed attribute Author.Affiliation (2.3 ms)

 00:00:00 Processed attribute Keyword (20.6 ms)

Querying Structured Data in a Natural Way

[220]

 00:00:00 Pass 3 started

 00:00:00 Pass 3 finished (15.5 ms, 73 page faults)

 00:00:00 Post-processing started

 00:00:00 Optimized attribute Title (0.1 ms)

 00:00:00 Optimized attribute Year (0.0 ms)

 00:00:00 Optimized attribute Author.Id (0.0 ms)

 00:00:00 Optimized attribute Author.Name (0.5 ms)

 00:00:00 Optimized attribute Author.Affiliation (0.2 ms)

 00:00:00 Optimized attribute Keyword (0.6 ms)

 00:00:00 Global optimization

 00:00:00 Post-processing finished (17.2 ms)

 00:00:00 Finalizing index

 00:00:00 Total time: 157.6 ms

 00:00:00 Peak memory usage: 23 MB (commit) + 0 MB (data file) = 23 MB

Understanding natural language
After we have built an index, we can start creating our grammar file. This specifies
what natural language the service can understand, and how it can translate into
semantic query expressions. Open the academic.xml file to see an example of how a
grammar file can look.

The grammar is based on a W3C standard for speech recognition, called SRGS. The
top-level element is the grammar element. This requires a root attribute to specify
the root rule, which is the starting point of the grammar.

To allow attribute references, we add the import element. This needs to be a child of
the grammar element, and should come before anything else. It contains two required
attributes: the name of the schema file to import, and a name that elements can use
for referencing the schema. Note that the schema file must be in the same folder as
the grammar file.

Next in line is the rule element. This defines a structural unit, which specifies what
query expressions the service can interpret. A rule element requires an id attribute.
Optionally, you can add an example element, which is used to describe phrases that
may be accepted by the rule element. In that case, this will be a child element of
the rule.

A rule element also contains an item element. This groups a sequence of grammar
constructs, and can be used to indicate repetitions of the sequence. Alternatively, it
can be used to specify alternatives, together with one-of elements.

Chapter 8

[221]

One-of elements specify expansions among one of the item elements. The item by
may be defined as a one-of element, with written by and authored by as expansions.

Using the ruleref element allows us to create more complex expressions by using
simpler rules. It simply references other rules by adding a URI attribute.

The attrref element references an index attribute, which allows us to match
against attributes in the index. The attribute URI is required, which must specify
the index schema and attribute name to reference. This must match a schema that is
imported through the import element.

The tag element defines the path through the grammar. This element allows you to
assign variables or execute functions to help the flow of the grammar.

Once the grammar file is completed, we can compile it into binary grammar. This is
done by running the following command:

kes.exe build_grammar Academic.xml Academic.grammar

Running this command will produce output similar to the following:

Input XML: \Programs\KES\Example\Academic.xml

Output Grammar: \Programs\KES\Example\Academic.grammar

Local hosting and testing
With the index and grammar in place, we can go on to test the service locally. Locally
testing the service allows for rapid prototyping, which allows us to define the
scheme and grammar quickly.

When we are testing locally, the KES only supports up to 10,000 objects and 10
requests per second. It also terminates after a total of 1,000 requests have been
executed. We will learn how to bypass these restrictions in a bit.

To host the KES locally, run the following command:

Kes.exe host_service Academic.grammar Academic.index -port 8080

This will start up the service, running on port 8080. To verify that it is working as
intended, open your browser and go to http://localhost:8080.

Querying Structured Data in a Natural Way

[222]

Doing so should present you with the following screen:

Running the KES as a local service also allows us to use the academic API for testing.
We are going to make some modifications to our example application—created for
the academic API—in order to support this.

First, we are going to modify the WebRequest.cs file. We need to make sure that we
can change the endpoint, so add the following function to the class:

 public void SetEndpoint(string uri) {
 _endpoint = uri;
 }

Next, we need to add a new TextBox element to the MainView.xaml file. This
will allow us to enter a URL. This needs a corresponding string property in the
MainViewModel.cs file. When changing this property, we need to call SetEndpoint
on the _webRequest object. This can look as follows:

 private string _endpoint;
 public string Endpoint {
 get { return _endpoint; }
 set {
 _endpoint = value;
 RaisePropertyChangedEvent("Endpoint");
 _webRequest?.SetEndpoint(value);
 }
 }

Chapter 8

[223]

Finally, we need to update the constructor of our ViewModel. Change the first line to
the following:

 Endpoint = "https://api.projectoxford.ai/academic/v1.0/";
 _webRequest = new WebRequest(Endpoint, "API_KEY_HERE");

This will let the default endpoint be the original API address, but allows us to use the
application to test the KES locally.

By testing the application with the local endpoint, the following result can
be produced:

Note that evaluate and calchistogram will need to update the
attributes in the request of the test application for it to work with the
local KES.

Going for scale
While it is nice to be able to create local prototypes, the limitations ensure that
we need to deploy the service elsewhere for production. In this case, this means
deploying the KES to Microsoft Azure.

Querying Structured Data in a Natural Way

[224]

We will now look at the steps required to deploy the KES to Microsoft Azure.

Hooking into Microsoft Azure
The first step is to download the Azure publish settings file. This needs to be saved
as AzurePublishSettings.xml and stored in the directory in which kes.exe runs.

You can find the Azure publish settings file at https://manage.
windowsazure.com/publishsettings/.

There are two ways to build and host the KES without restrictions. The first way is
to boot up a Windows virtual machine in Azure. On this VM, you should follow
the same steps that we took locally. This allows for rapid prototyping, but without
any restrictions.

The second way is to run kes.exe locally, but adding --remote as a parameter.
This will create a temporary Azure VM, build the index, and upload the index to a
specified target blob storage. An example command could look as follows:

kes.exe build_index

http://<account>.blob.core.windows.net/<container>/Academic.schema
http://<account>.blob.core.windows.net/<container>/Academic.full.data
http://<account>.blob.core.windows.net/<container>/Academic.full.index

--remote Large

This process can take up to 10 minutes, so ideally, prototyping should be done
locally, or through an Azure VM.

Deploying the service
With the grammar and index in place and prototyping done, we can deploy the
service to a Microsoft Azure cloud service.

To learn how to create a Microsoft Azure cloud service, head over
to https://azure.microsoft.com/en-us/documentation/
articles/cloud-services-how-to-create-deploy/.

https://manage.windowsazure.com/publishsettings/
https://manage.windowsazure.com/publishsettings/
https://azure.microsoft.com/en-us/documentation/articles/cloud-services-how-to-create-deploy/
https://azure.microsoft.com/en-us/documentation/articles/cloud-services-how-to-create-deploy/
https://azure.microsoft.com/en-us/documentation/articles/cloud-services-how-to-create-deploy/

Chapter 8

[225]

To deploy the service to a staging slot, run the following command:

kes.exe deploy_service

http://<account>.blob.core.windows.net/<container>/Academic.grammar

http://<account>.blob.core.windows.net/<container>/Academic.index

<serviceName> large --slot Staging

This will allow us to perform basic tests before deploying the service to a production
slot. When the testing is done, we can deploy it to production by running the same
command again, specifying Production as the last parameter.

When the service is deployed, we can test it by visiting http://<serviceName>.
cloudapp.net in a browser.

Answering FAQs using QnA Maker
QnA Maker allows us to use existing frequently asked questions (FAQs) to create
a bot that answers these questions. We can generate a knowledge base from existing
FAQs, and train a model from it.

To get started, head over to https://qnamaker.ai. Log on or register by clicking
Sign in, in the upper-right corner. This will present you with the following screen:

http://<serviceName>.cloudapp.net in a browser
http://<serviceName>.cloudapp.net in a browser
https://qnamaker.ai
https://qnamaker.ai

Querying Structured Data in a Natural Way

[226]

Creating a knowledge base from
frequently asked questions
If no services have been created, we can create one by clicking on the Create
a knowledge base tab. This will present us with the following screen, as shown in
the following two screenshots:

Chapter 8

[227]

1. Create a QnA service in Microsoft Azure by clicking the blue button in
STEP 1 in the screenshot.

2. Connect the QnA service to the knowledge base.
3. Enter a name for the service.
4. Enter the baseline FAQs to use. This can either be in the form of one or more

URLs, or a file containing question-and-answer pairs. For our example, we
will be generating a knowledge base from the URL.

5. Let the rest of the settings be default.
6. Click Create your KB.

Querying Structured Data in a Natural Way

[228]

If you do not have any FAQs to use, you can use https://www.
microsoft.com/en-us/software-download/faq from Microsoft.

Once the knowledge base has been created, you will be taken to a page with all the
question-and-answer pairs. This is shown in the following screenshot:

On this page, we can look through all question-and-answer pairs, from all our FAQ
sources. We can also add new pairs by clicking Add QnA pair.

Training the model
Every time we make changes to the knowledge base, it is wise to click Save and
Train. This will ensure that our model is up to date, with the most current question-
and-answer pairs.

Once we have trained the model, we can test it. This can be done by clicking the Test
button on the right-hand side. This will present us with the following chat window:

https://www.microsoft.com/en-us/software-download/faq
https://www.microsoft.com/en-us/software-download/faq

Chapter 8

[229]

From this chat dialog, we can test some or all of our questions to verify that we get
the correct answers. We can also improve the model by asking questions in different
ways. In some cases, this will present us with the wrong answer.

If we have been presented with the wrong answer, we can change this by selecting
the correct one. With any given question, the possible answers will be listed by
clicking the Inspect button beneath the question, ordered by probability. Selecting
the correct answer and retraining the model will ensure a correct answer when
asking the same question later.

Querying Structured Data in a Natural Way

[230]

Publishing the model
Once we are done with training, it is time to publish the service. We can do so by
clicking Publish in the top menu. Doing so will present us with a basic HTTP request
that we can try, as shown in the following screenshot:

In the preceding screenshot, we can see the endpoint to use, the required application
ID, the subscription key, and a sample question in the request body. All those
parameters are required to get a successful response.

A successful call to the service will provide us with a JSON response as follows:

{ "Answer": "Sample response", "Score": "0" }

If we have an application that uses this, we can decide not to use the answer if the
score has fallen below a certain threshold.

Typically, we would be using bots of different kinds to use this service. We can, for
example, add this to a Skype bot or Slackbot, or simply integrate it with a chatbot on
a customer support site.

Chapter 8

[231]

Summary
Throughout this chapter, we have learned about the Project Academic Knowledge
API and Project Knowledge Exploration Service. We looked at how to interpret
natural language queries to get query expressions for evaluation. Through this
evaluation, we have retrieved academic papers from the Microsoft Academic Graph
knowledge base. From there, we learned how to set up the Knowledge Exploration
Service itself, going from defining the schemas all the way to deploying it to a
Microsoft Azure cloud service. In the end, we learned how to set up a simple QnA
Maker service.

In the next chapter, we will move on to looking at search APIs, learning how to
utilize the different search APIs offered by Bing.

[233]

Adding Specialized Searches
The previous chapter explored the relationship between academic papers and
journals, and we learned how to search for academic papers. This chapter moves on
to the last of the top-level APIs, Search. In this chapter, we will learn how to search
for web content. We will see how we can search for the latest news with certain
keywords or categories. Further on, we will search for images and videos, and learn
how to automatically suggest search queries for the end user. By the end of this
chapter, we will be introduced to Bing Visual Search and find out how to create
customized search experiences by using Bing Custom Search.

In this chapter, we will learn about the following topics:

• How to search for web pages and documents
• How to search for news articles
• How to search for images and videos
• How to add autosuggestions in applications
• How to filter search results based on safe search policies

Searching the web using the
smart-house application
The Bing Web Search API provides us with a search experience similar to what we
find at http://bing.com/search. It returns results that are relevant to any queries.

A response for any request to this API will contain web pages, images, videos,
and news articles. In a typical scenario, this is the API you would use for any of
these searches.

http://bing.com/search

Adding Specialized Searches

[234]

Note that, in a real-life scenario, all requests should be made from a server-side
application, not from a client, as we do in this example.

If you have not already done so, sign up for the Bing Web Search API
at https://portal.azure.com. You can read more on the API at
https://azure.microsoft.com/en-us/services/cognitive-
services/bing-web-search-api/.

Preparing the application for web searches
Before diving into the required technicalities for web searches, we are going to
prepare our smart-house application.

Add a new View in the Views folder called BingSearchView.xaml. At the very
least, this should contain two Combobox elements, one for the search type and one for
the search filter. We need one TextBox element for our search query, as well as one
Button element to execute the search. Finally, we need a TextBox element to display
the search result.

To accompany the search types and search filter, we need to add a new file, called
BingSearchTypes.cs, in the Model folder. Add the following two enums:

 public enum BingSearchType {
 Web, News, NewsCategory
 }

 public enum SafeSearch {
 Strict, Moderate, Off
 }

Adding this allows us to use both the Bing Web Search and Bing News Search
APIs. The latter will be discussed later. The second enum, SafeSearch, will also be
discussed in more detail later.

We need a new ViewModel. Add a new file called BingSearchViewModel.
cs, to the ViewModels folder. In this, we need to add two string properties for
our search query and the search results. We will also need one property of type
BingSearchType to represent the selected search type. Also needed is a property of
type SafeSearch to represent the selected safe-search filter. An ICommand property is
needed for our button.

https://portal.azure.com
https://azure.microsoft.com/en-us/services/cognitive-services/bing-web-search-api/
https://azure.microsoft.com/en-us/services/cognitive-services/bing-web-search-api/
https://azure.microsoft.com/en-us/services/cognitive-services/bing-web-search-api/

Chapter 9

[235]

In addition, we need to be able to display the values from the previously created
SafeSearch enums. This can be achieved by adding the following properties:

public IEnumerable<BingSearchType> AvailableSearchTypes {
 get {
 return Enum.GetValues (typeof(BingSearchType)).
Cast<BingSearchType>();
 }
}

public IEnumerable<SafeSearch> SafeSearchFilter {
 get {
 return Enum.GetValues(typeof(SafeSearch)).Cast<SafeSearch>();
 }
}

We get all the values from each enum, and return them as an IEnumerable.

At the time of writing, none of the search APIs have any NuGet client packages, so
we need to make the web requests ourselves. Copy the WebRequest.cs file we used
in earlier chapters into the Model folder. Rename the file BingWebRequest.cs and
the class BingWebRequest.

As all API calls are GET requests, we can simplify this class a bit. Remove the URL
parameter from the constructor, and remove the _endpoint member completely.
Doing so allows us to simplify the MakeRequest function, as follows:

public async Task<TResponse> MakeRequest<TResponse>(string url) {
 try {
 var request = new HttpRequestMessage(HttpMethod.Get, url);

 HttpResponseMessage response = await _httpClient.
SendAsync(request);

 if (response.IsSuccessStatusCode) {
 string responseContent = null;

 if (response.Content != null)
 responseContent = await response.Content.
ReadAsStringAsync();

 if (!string.IsNullOrWhiteSpace(responseContent))
 return JsonConvert.DeserializeObject<TResponse>
(responseContent, _settings);

 return default(TResponse);
 }

Adding Specialized Searches

[236]

We do not need a request body, and have removed the TRequest and corresponding
code. We have also hardcoded the HTTP method, and said that we will specify the
complete URL endpoint when calling the function. The rest of the function should
stay the same.

Remember to add references to System.Web and System.Runtime.
Serialization.

With that in place, we can move on. Make sure that the code compiles and executes
before continuing.

Searching the web
To be able to use Bing Web Search, we need to create a new class. Add a new file
called BingSearch.cs, to the Model folder.

We need to add a member of type BingWebRequest, which we will create in
the constructor:

 private BingWebRequest _webRequest;

 public BingSearch() {
 _webRequest = new BingWebRequest("API_KEY_HERE");
 }

Create a new function called SearchWeb. This should accept two parameters, a string
for the search query and a SafeSearch parameter. The function should be marked
as async and return a Task<WebSearchResponse>. WebSearchResponse is a data
contract we will learn more about presently:

public async Task<WebSearchResponse> SearchWeb(string query,
SafeSearch safeSearch)
{
 string endpoint = string.Format("{0}{1}&safeSearch={2}
&count=5&mkt=en-US",
 "https://api.cognitive.microsoft.com/bing/v7.0/search?q=", query,
safeSearch.ToString());

First, we construct our endpoint, which points us to the web search service. We make
sure that we specify the query, q, the safeSearch selection, and the market, mkt. The
latter two will be discussed presently in this chapter.

Chapter 9

[237]

The only required parameter is the query string. This should not exceed a length of
1,500 characters. Other optional parameters are described in the following table:

Parameter Description

responseFilter

A comma-delimited list of the result types to include in
the response. If not specified, results will contain all types.
Legal values include Computation, Images, News,
RelatedSearches, SpellSuggestions, TimeZone, Videos,
and WebPages.

setLang A two-letter language code to specify the language for user
interface strings.

textDecorations Specifies whether or not the query term is highlighted in the
results. Defaults to false.

textFormat The type of formatting to apply to display strings. Can be either
raw or HTML, with raw being the default.

There are a few more parameters apart from these ones. They are, however, common
to all searches and will be discussed at the end of this chapter.

With the endpoint in place, we can move on:

 try {
 WebSearchResponse response = await _webRequest.MakeRequest<Web
SearchResponse>(endpoint);

 return response;
 }
 catch (Exception ex) {
 Debug.WriteLine(ex.Message);
 }

 return null;

With the newly constructed endpoint, we call MakeRequest on the _webRequest
object. We specify the API key and endpoint as parameters to this call, and we expect
a WebSearchResponse object as a response.

WebSearchResponse is a data contract, which we get by deserializing the JSON
response from the API service. The top-level object will contain objects with
the different result types. Look in the code samples provided in the file called
BingSearchResponse.cs for a complete data contract.

Adding Specialized Searches

[238]

For a complete list of response objects from Bing Web Search, visit
https://msdn.microsoft.com/en-us/library/dn760794.
aspx#searchresponse.

Heading back to the BingSearchViewModel.cs file, we can add BingSearch as a
member. The constructor should look as follows:

 public BingSearchViewModel() {
 _bingSearch = new BingSearch();
 SearchCommand = new DelegateCommand(Search, CanSearch);
 }

The CanSearch parameter should return true if we have any text entered into the
search query text field. Search should, for now, look as follows:

 private async void Search(object obj) {
 switch (SelectedSearchType) {
 case BingSearchType.Web:
 var webResponse = await _bingSearch.
SearchWeb(SearchQuery, SelectedSafeSearchFilter);
 ParseWebSearchResponse(webResponse as
WebSearchResponse);
 break;
 default:
 break;
 }
 }

We call the SearchWeb function on the _bingSearch object, passing on the
SearchQuery and SelectedSafeSearchFilter properties as parameters. With a
successful response, we send the response to a new function, ParseWebSearch:

private void ParseWebSearchResponse(WebSearchResponse
webSearchResponse) {
 StringBuilder sb = new StringBuilder();

 Webpages webPages = webSearchResponse.webPages;

 foreach (WebValue website in webPages.value)
 {
 sb.AppendFormat("{0}\n", website.name);
 sb.AppendFormat("URL: {0}\n", website.displayUrl);
 sb.AppendFormat("About: {0}\n\n", website.snippet);
 }

 SearchResults = sb.ToString();
}

Chapter 9

[239]

When we interpret the results from a web search, we are interested in the resulting
webPages. For each web page, we want to output the name, the display URL, and a
descriptive snippet.

A successful test run with the web search should present us with the
following result:

Result objects from a web search contain a RankingResponse object. This will
identify how the results will typically be displayed on a search website, ordered in
a mainline and sidebar. In a production system, you should always aim to display
results in the order specified by RankingResponse.

This can be done in two ways. One is to use the specified ID field to rank all of the
results. The other way is a bit more complex. It involves splitting the results based on
answer types and the result index.

Adding Specialized Searches

[240]

Apart from the queries we have seen up to now, we can also query for computations
(for instance, 2 + 2), time zone calculations, and related searches. These queries will
result in JSON responses, which is a bit different from a regular web search.

Getting the news
Using the Bing News Search API, we can search for news in several ways. There are
three endpoints we can use for this API:

• /news: Get top news articles, based on category
• /news/search: Get news articles based on a search query
• /news/trendingtopics: Get top trending news topics

In our smart-house application, we will add the first two, while we will only cover
the last one theoretically.

If you have not already done so, sign up for the Bing News Search API at
https://portal.azure.com.

News from queries
A lot of the groundwork for query-based news searches has already been done in
the web search sample. To search for news based on given queries, we need to add a
new function in the BingSearch class.

Open the BingSearch.cs file and add a new function called SearchNews. This
should accept a string and a SafeSearch parameter. The function should be
marked as async, and return a Task<BingNewsResponse> object:

public async Task<BingNewsResponse> SearchNews(string query,
SafeSearch safeSearch)
{
 string endpoint = string.Format("{0}
{1}&safeSearch={2}&count=5&mkt=en-US",
 "https://api.cognitive.microsoft.com/bing/v7.0/news/search?q=",
query,
 safeSearch.ToString());

We will construct an endpoint consisting of the URL, the search query, and the
safeSearch parameter. Notice how we specify the market, mkt, while limiting the
count to 5. Both of these parameters will be described presently in this chapter.

https://portal.azure.com
https://portal.azure.com

Chapter 9

[241]

The only required parameter is the query string, q. Apart from parameters described
for web searches (setLang, textDecorations, and textFormat), we can also specify
a parameter called originalImg. This is a Boolean value, which, if set to true, will
provide a URL to the original image (for any image in the article). If that is set to
false, which is the default, a URL for the thumbnail is provided.

With an endpoint in place, we can call the API:

 try {
 BingNewsResponse response = await _webRequest.MakeRequest<Bing
NewsResponse>(endpoint);

 return response;
 }

 catch (Exception ex) {
 Debug.WriteLine(ex.Message);
 }

 return null;

We call MakeRequest, on the _webRequest object, passing on the endpoint as
a parameter.

A successful call will result in a JSON response, which we deserialize into a
BingNewsResponse object. This object needs to be created as a data contract.

The BingNewsResponse object will contain an array of news articles. Each item in
this array will contain the article name, URL, image, description, publishing date,
and more.

For full details of each item in the news article array, visit
https://msdn.microsoft.com/en-us/library/dn760793.
aspx#newsarticle.

With that in place, we can head back into the BingSearchViewModel.cs file and
modify the Search function. We do so by adding a case for BingSearchType.News
inside the switch statement:

 case BingSearchType.News:
 var newsResponse = await _bingSearch.SearchNews(SearchQuery,
SelectedSafeSearchFilter);
 ParseNewsResponse(newsResponse as BingNewsResponse);
 break;

Adding Specialized Searches

[242]

A successful response will be parsed and displayed in the UI:

private void ParseNewsResponse(BingNewsResponse bingNewsResponse) {
 StringBuilder sb = new StringBuilder();

 foreach(Value news in bingNewsResponse.value) {
 sb.AppendFormat("{0}\n", news.name);
 sb.AppendFormat("Published: {0}\n", news.datePublished);
 sb.AppendFormat("{0}\n\n", news.description);
 }

 SearchResults = sb.ToString();
}

We are mostly interested in the news article name, the date it is published, and
a description.

A good test run of this should present us with the following result:

Chapter 9

[243]

News from categories
When we want to get the top articles for certain categories, we go through a similar
procedure as we did for regular news queries. The difference lies in the endpoint
we construct.

Let's create a new function, SearchNewsCategory, in the BingSearch class:

public async Task<BingNewsResponse> SearchNewsCategory(string query)
{
 string endpoint = string.Format("{0}{1}&mkt=en-US", "https://api.
cognitive.microsoft.com/bing/v5.0/news?category=", query);

Here, we have a category parameter, with the topic we wish to search for. This is an
optional parameter. If it is empty, we will get the top news article for all categories.

For this search, we can specify two different markets, en-GB and en-US. Each of these
comes with a list of pre-defined categories that are currently supported:

For a complete list of supported categories, visit https://
msdn.microsoft.com/en-us/library/dn760793.
aspx#categoriesbymarket.

 try {
 BingNewsResponse response = await _webRequest.MakeRequest<Bing
NewsResponse>(endpoint);

 return response;
 }

 catch (Exception ex) {
 Debug.WriteLine(ex.Message);
 }

 return null;

With the newly constructed endpoint, we call MakeRequest on the _webRequest
object. This should result in the same response object as for regular news queries.
In our ViewModel, we add a case for this search type in the Search function.
With the response, we utilize the already created ParseNewsResponse to get
the data we want.

Adding Specialized Searches

[244]

Trending news
The search for trending news is only available for the en-US and zh-CN markets. To
execute this search, make a request to the following URL: https://api.cognitive.
microsoft.com/bing/v7.0/news/trendingtopics.

No parameters are required by this call, but you can add filters, such as the common
filters we will discuss later. The only exception is the freshness filter, which will not
work for this request.

A successful call to this endpoint will result in a TrendingTopicAnswer object that
will contain an array of trending topics. Each item in this array will contain the
following data:

Data field Description
image A link to a related image

isBreakingNews A Boolean indicating whether this topic is considered
breaking news

name The title of the topic
query A query string that will return this topic
webSearchUrl A URL to the Bing search results for this topic
webSearchUrlPingSuffix A query string fragment to identify the webSearchUrl

Searching for images and videos
The Bing Image Search API and Bing Video Search API allow us to search directly
for images or videos. These APIs should be used only if you need image or video
content. There is a possibility that calling these APIs will affect performance and
relevance negatively, and as such, one should aim to use the Bing Web Search API.

If you have not already done so, sign up for the Bing Image Search API
and the Bing Video Search API at https://portal.azure.com.

Using a common user interface
As we do not need image or video search in our smart-house application, we will
go on to create a new project. Create this project using the MVVM template that we
created in Chapter 1, Getting Started with Azure Cognitive Services.

https://api.cognitive.microsoft.com/bing/v5.0/news/trendingtopics
https://api.cognitive.microsoft.com/bing/v5.0/news/trendingtopics
https://portal.azure.com

Chapter 9

[245]

These APIs do not come with any client packages. Like we did previously, we should
really make these calls from the server-side application not the client application.
In any case, we need to copy the BingWebRequest.cs file from the smart-house
application to the Model folder. Make sure to change the namespace.

Remember to add references to System.Web and System.Runtime.
Serialization.

We will need to install the Newtonsoft.Json NuGet package for our deserialization
to work. Do so through the NuGet package manager.

As we will output some of the results as text, we can get away with one common
user interface.

Open the MainView.xaml file. Add two TextBox elements, one for the search query
and one for the result. We need a ComboBox element to select between search types.
Finally, we need to add a Button element for our search command.

In the MainViewModel.xaml file, we need to add an enum with the search types. Add
the following at the bottom of the file, beneath the class:

 public enum SearchType {
 ImageSearch,
 VideoSearch,
 }

We are only interested in image and video searches with queries. In addition to these
search forms, both APIs can search for trending images and videos. The Bing Video
Search API also allows us to get more detail on any given video we have already
searched for.

In the MainViewModel class, we need to add two string properties corresponding to
our TextBox elements. We will also need a property of type SearchType to indicate
the selected search type. To indicate what search types we have available, we add an
IEnumerable property, as follows:

public IEnumerable<SearchType> SearchTypes {
 get {
 return Enum.GetValues(typeof(SearchType)).Cast<SearchType>();
 }
}

The last property we need to add to our ViewModel is the ICommand property, which
will be bound to our Button element.

Adding Specialized Searches

[246]

Now, we need to create a new class, so create a new file called BingSearch.cs, in
the Model folder. This will be responsible for constructing the correct endpoints and
executing both search types.

We will need to add a member of type BingWebRequest. This should be created in
the constructor:

private BingWebRequest _webRequest;

public BingSearch() {
 _webRequest = new BingWebRequest("API_KEY_HERE");
}

That is all we need to do here for now.

Back in the ViewModel, we need to add a member of type BingSearch. With that in
place, we can create our constructor:

public MainViewModel() {
 _bingSearch = new BingSearch();

 SearchCommand = new DelegateCommand(Search);

 SelectedSearchType = SearchTypes.FirstOrDefault();
}

With the ViewModel in place, we can do some searches.

Searching for images
For our example, we will only be executing the image search based on user
queries. To allow for this, we will need to add a function in the BingSearch class.
Call the function SearchImages and let it accept a string as a parameter. The
function should return Task<ImageSearchResponse> and be marked as async.
ImageSearchResponse will, in this case, be a data contract object, with data
deserialized from our response:

public async Task<ImageSearchResponse> SearchImages(string query)
{
 string endpoint = string.Format("{0}{1}",
 "https://api.cognitive.microsoft.com/bing/v5.0/images/search?q=",
query);

We will start by constructing our endpoint. In this case, we only specify the query
parameter, q. This is a required parameter.

Chapter 9

[247]

Apart from the common query parameters, which we will see presently, we can also
add the following parameters:

Parameter Description

cab Bottom coordinate of the region to crop, in a value from 0.0 to 1.0.
Measured from the top-left corner.

cal The left coordinate of the region to crop, in a value from 0.0 to 1.0.
car The right coordinate of the region to crop, in a value from 0.0 to 1.0.
cat The top coordinate of the region to crop, in a value from 0.0 to 1.0.
ct The crop type to use. Currently, the only legal value is 0 - Rectangular.

In addition, we can specify the following parameters as filters:

Filter name Description

aspect Filter images by aspect ratio. Legal values are Square, Wide, Tall,
and All.

color Filter images by specific colors.
imageContent Filter images by image content. Legal values are Face and Portrait.

imageType Filter images by image types. Legal values are AnimatedGif,
Clipart, Line, Photo, and Shopping.

license
Filter images by license that apply to the image. Legal values
are Public, Share, ShareCommercially, Modify,
ModifyCommercially, and All.

size
Filter images by size. Legal values are Small (< 200 x 200 pixels),
Medium (200 x 200 to 500 x 500 pixels), Large (>500 x 500 pixels),
Wallpaper, and All.

height Only get results with a specific height.
width Only get results with a specific width.

With the endpoint in place, we can execute the request:

 try {
 ImageSearchResponse response = await _webRequest.MakeRequest<Im
ageSearchResponse>(endpoint);

 return response;
 }
 catch (Exception ex) {
 Debug.WriteLine(ex.Message);
 }

 return null;

Adding Specialized Searches

[248]

We will call MakeRequest on the _webRequest object, passing on the endpoint as a
parameter. A successful call will result in an ImageSearchResponse, which is the
deserialized data contract object from the JSON response.

The resulting object will contain a lot of data. Among that data is an array that
contains information about images. Each item in that array contains data, such
as an image name, date published, URL, and image ID.

For a complete list of the data available in a response, visit https://
msdn.microsoft.com/en-us/library/dn760791.aspx#images.

Heading over to MainViewModel.cs, we can now create the Search function:

 private async void Search(object obj) {
 SearchResult = string.Empty;

 switch(SelectedSearchType) {
 case SearchType.ImageSearch:
 var imageResponse = await _bingSearch.
SearchImages(SearchQuery);
 ParseImageResponse(imageResponse);
 break;
 default:
 break;
 }
 }

With a successful response, we parse the imageResponse. Normally, this would
mean displaying images in a list or similar, but we will take the easier option by
outputting textual information:

private void ParseImageResponse(ImageSearchResponse imageResponse)
{
 StringBuilder sb = new StringBuilder();
 sb.Append("Image search results:\n\n");
 sb.AppendFormat("# of results: {0}\n\n", imageResponse.
totalEstimatedMatches);

 foreach (Value image in imageResponse.value) {

Chapter 9

[249]

 sb.AppendFormat("\tImage name: {0}\n\tImage size: {1}\n\tImage
host: {2}\n\tImage URL:
 {3}\t\n\n", image.name, image.contentSize, image.
hostPageDisplayUrl, image.contentUrl);
 }

 SearchResult = sb.ToString();
}

We will print out the number of matches in the search. Then, we will loop through
the image array, printing the name, size, host, and URL of each image.

A successful test run should present us with the following screen:

Adding Specialized Searches

[250]

In addition to the query-based image search, we can also search for trending images.
To do so, you will have to call the following endpoint: https://api.cognitive.
microsoft.com/bing/v7.0/images/trending.

Currently, this is only available for the following markets: en-US, en-CA, and en-AU.
A successful call to this endpoint will result in an array of categories. Each item in
this array will contain an array of trending images, as well as the title of the category.

Searching for videos
Searching for videos is nearly the same process as for images. The only real
difference is how we construct the endpoint and the response we get.

We are going to add a new function in the BingSearch class to accompany a
video search:

public async Task<VideoSearchResponse> SearchVideos(string query)
{
 string endpoint = string.Format("{0}{1}", "https://api.cognitive.
microsoft.com/bing/v7.0/videos/search?q=", query);

As you can see, there is only one required parameter: the query string, q. We can also
specify a few optional parameters that are common to all the search APIs, which will
be described later.

Aside from common filters, video can also filter results based on the following filters:

Filter Description
pricing Filter videos by price. Legal values are Free, Paid, and All.
resolution Filter by resolution. Legal values are 480p, 720p, 1080p, and All.

videoLength Filter videos by length. Legal values is Short (< 5 minutes), Medium
(5 to 20 minutes), Long (> 20 minutes), and All.

With the endpoint in place, we call the API:

try {
 VideoSearchResponse response = await _webRequest.MakeRequest<VideoS
earchResponse>(endpoint);

 return response;
}

catch (Exception ex) {

https://api.cognitive.microsoft.com/bing/v5.0/images/trending
https://api.cognitive.microsoft.com/bing/v5.0/images/trending

Chapter 9

[251]

 Debug.WriteLine(ex.Message);
}

return null;

We will call MakeRequest on the _webRequest object, passing on the endpoint as a
parameter. A successful call will result in a VideoSearchResponse object. This is a
data contract, deserialized from the JSON response.

Among other data, it will contain an array of videos. Each item in this array contains
a video name, description, publisher, duration, URL, and more.

For a complete list of data available in the search response, visit
https://msdn.microsoft.com/en-US/library/dn760795.
aspx#videos.

To be able to search for videos, we add a new case in the Search function, in
MainViewModel:

case SearchType.VideoSearch:
 var videoResponse = await _bingSearch.SearchVideos(SearchQuery);
 ParseVideoResponse(videoResponse);
 break;

We call the newly created SearchVideos, passing on the search query as a
parameter. If the call succeeds, we go on to parse the video:

private void ParseVideoResponse(VideoSearchResponse videoResponse)
{
 StringBuilder sb = new StringBuilder();
 sb.Append("Video search results:\n\n");
 sb.AppendFormat("# of results: {0}\n\n",
 videoResponse.totalEstimatedMatches);

 foreach (VideoValue video in videoResponse.value) {
 sb.AppendFormat("\tVideo name: {0}\n\tVideo duration: {1}\n\
tVideo URL: {2}\t\n",
 video.name, video.duration, video.contentUrl);

 foreach(Publisher publisher in video.publisher) {
 sb.AppendFormat("\tPublisher: {0}\n", publisher.name);
 }

Adding Specialized Searches

[252]

 sb.Append("\n");
 }
 SearchResult = sb.ToString();
}

As for images, we just show video information textually. In our example, we choose
to show the video name, duration, URL, and all publishers of a video.

A successful video search should give the following result:

In addition to the query-based video search, we can also search for trending videos.
To do so, you would have to call the following endpoint: https://api.cognitive.
microsoft.com/bing/v7.0/videos/trending.

Currently, this is only available for the following markets: en-US, en-CA, and en-AU.
A successful call to this endpoint will result in an array of categories and tiles. Each
item in the category array will contain a title and an array of subcategories. Each
subcategory will contain an array of tiles and the title. Each item in a tile array will
contain the video thumbnail and a query to use to get the specific video.

https://api.cognitive.microsoft.com/bing/v5.0/videos/trending
https://api.cognitive.microsoft.com/bing/v5.0/videos/trending

Chapter 9

[253]

If we want to get more information about any video, we can query the following
endpoint: https://api.cognitive.microsoft.com/bing/v7.0/videos/details.

This requires us to specify an id so that we can identify a video. We can also specify
the modulesRequested. This is a comma-separated list of the details we want.
Currently, the legal values are All, RelatedVideos, and VideoResult.

For a complete list of data available in the response from a details query,
visit https://msdn.microsoft.com/en-US/library/dn760795.
aspx#video.

Helping the user with autosuggestions
Autosuggestions are a great way to enhance user experience. The typical use case is
where, whenever a user enters some text into a text field, a list of suggested words is
displayed.

If you have not already done so, sign up for the Bing Autosuggest API at
https://portal.azure.com.

Adding autosuggest to the user interface
As textboxes in WPF do not contain any autosuggestion features, we need to
add some on our own. We are going to use a third-party package, so install the
WPFTextBoxAutoComplete package through the NuGet package manager, in our
example project.

In the MainView.xaml file, add the following attribute to the starting Window tag:

 xmlns:behaviors="clr-namespace: WPFTextBoxAutoComplete;assembly=WP
FTextBoxAutoComplete"

We will also need to make sure that the TextBox binding for our search query
updates whenever the user enters data. This can be done by making sure that the
Text attribute looks as follows:

Text="{Binding SearchQuery, UpdateSourceTrigger=PropertyChanged}"

In the same TextBox element, add the following:

behaviors:AutoCompleteBehavior.AutoCompleteItemsSource = "{Binding
Suggestions}"

https://api.cognitive.microsoft.com/bing/v5.0/videos/details
https://portal.azure.com
https://portal.azure.com

Adding Specialized Searches

[254]

In the ViewModel, in the MainViewModel.cs file, we need the corresponding
property. This should be an IEnumerable<string> object. This will be updated
with the result from the autosuggest query we will perform presently.

Suggesting queries
To get autosuggestions, we first add a new class. Add a new file called
BingAutoSuggest.cs, to the Model folder. The BingAutoSuggest class should have
a member of type BingWebRequest, which should be created in the constructor.

Create a new function called Suggest. This should accept a string as a parameter,
returning a Task<List<string>> object. Mark the function as async.

We will start by constructing an endpoint, where we specify the query string, q. This
field is required. We also specify the market, mkt, although this is not required. We
do not need any other parameters. Before we execute the API call, we will create a
list of suggestions, which we will return to the caller:

public async Task<List<string>> Suggest(string query) {
 string endpoint = string.Format("{0}{1}&mkt=en-US", "https://api.
cognitive.microsoft.com/bing/v7.0/suggestions/?q=", query);

 List<string> suggestionResult = new List<string>();

We will make a call to MakeRequest on the _webRequest object, passing on the
endpoint as a parameter. If the call succeeds, we expect the JSON response to
deserialize into a BingAutoSuggestResponse object. This object will contain an array
of suggestionGroups, where each item contains an array of SearchSuggestions.

Each item of SearchSuggestion contains a URL, display text, a query string,
and a search kind. We are interested in the display text, which we add to the
suggestionResult list. This list is returned to the caller:

try {
 BingAutoSuggestResponse response = await _webRequest.MakeRequest<B
ingAutoSuggestResponse>(endpoint);

 if (response == null || response.suggestionGroups.Length == 0)
 return suggestionResult;

 foreach(Suggestiongroup suggestionGroup in response.
suggestionGroups) {

 foreach(Searchsuggestion suggestion in suggestionGroup.
searchSuggestions) {

Chapter 9

[255]

 suggestionResult.Add(suggestion.displayText);
 }
 }
}

catch(Exception ex) {
 Debug.WriteLine(ex.Message);
}

return suggestionResult;

For a complete description of response data, go to https://msdn.
microsoft.com/en-us/library/mt711395.aspx#suggestions.

In the MainViewModel.cs file, we want to get suggestions as we type. We will create
a new function, as follows:

private async void GetAutosuggestions() {

 var results = await _autoSuggest.Suggest(SearchQuery);

 if (results == null || results.Count == 0) return;

 Suggestions = results;
}

This will call the newly created Suggest function, with the current value
of the SearchQuery. If any results are returned, we assign them to the
SuggestionsIEnumerable that we created earlier. Make sure to call
this function when we set the value in the SearchQuery property.

In the UI, this will have the first suggestion automatically populated in the search-
query field. This is not ideal for users, but it will do for our test example.

Search commonalities
For all the APIs we have covered, there are a few similarities. We will cover
these now.

Adding Specialized Searches

[256]

Languages
It is highly recommended to specify which market you want results for. Searches
will typically return results for the local market and language of the user, based on
the current location. As you can imagine, this is not always what the user wants. By
specifying the market, you can tailor the search results for the user.

How you choose to solve this technically is dependent on the requirements of your
application. For a smart-house application, you would probably allow the user to
set the market in the settings. For a web application created only for French users in
France, you would probably not allow the user to change the market.

Specifying the market is done by adding the mkt parameter to the GET request.
This should then specify the market code, for example, en-US for English in the
United States.

While any API may support a specific market, some features may not
support a given market.

A subset of the languages supported is English, Spanish, German, Dutch, French,
Portuguese, Traditional Chinese, Italian, Russian, and Arabic.

In addition, we can specify a cc parameter to the GET request. This specifies a
country (typically, the country the user is in). This parameter should be in the form
of a two-letter country code, for instance, GB for United Kingdom.

A wide variety of countries can be specified, and the list is continuously subject
to change.

Pagination
Some searches may yield a large number of results. In these cases, you may want
to perform pagination. This can be achieved by specifying the count and offset
parameters in the GET request.

If you want 10 results per page, you would start by setting the count to 10, and the
offset to 0 for the first page. When the user navigates to the next page, you would
keep the count at 10, but increase the offset to 10. For the next page, you would
increase the offset to 20, and so on.

Chapter 9

[257]

The maximum number of results returned in each query (the count parameter) varies
for each API. See the following table for the current maximum count per API:

API Maximum search
results

Default search
results

Bing News Search 100 10
Bing Web Search 50 10
Bing Image Search 150 35
Bing Video Search 105 35

Filters
We have seen some filters for individual APIs. In addition to these, there are a couple
of filters which can be applied to all searches.

Safe search
The safe search filter can be used to filter search results for adult content.
This parameter is added in the request URL.

The safeSearch parameter can be one of the following values:

• Off: All result items will be returned
• Moderate: Result items can contain adult text, but no adult images or videos

will be included
• Strict: No adult text, images, or videos are included in the result items

Note that, if the IP address of the user indicates a location that requires the Strict safe
search, this setting will be ignored. Bing will, in this case, default to the Strict policy.

If the parameter has not been set, it defaults to moderate.

Freshness
By adding the freshness parameter to a request, you can filter search results based
on the age of result items. The values that can be specified are as follows:

• Day: Results from the last 24 hours
• Week: Results from the last 7 days
• Month: Results from the last 30 days

Adding Specialized Searches

[258]

Errors
Among all the APIs we have covered, there are a few possible response codes that
you may receive for each request. The following table describes all of the possible
response codes:

Code Description
200 Successful request.

400
One or more required query parameters are missing, or one
of the parameters is invalid. More details are described in the
ErrorResponse field.

401 The provided subscription key is invalid or missing.

403
Typically returned if the monthly quota is exceeded. Can also be used
if the caller does not have permission to access the requested resource.

410
The HTTP protocol has been used instead of HTTPS, which is the only
supported protocol.

429 The quota per second has been exceeded.

Searching for visual content using Bing
Visual Search
Using the Bing Visual Search API, one can interpret images. This API allows us to
gain insights about images. This includes finding visually similar images, searches,
and shopping sources. It can also identify people, places, and objects, as well as text.

Sending a request
You will typically upload an image to the API to retrieve insights on it. In addition,
you can pass on an URL to an image.

The endpoint you should use to query the Bing Visual Search API is
https://api.cognitive.microsoft.com/bing/v7.0/images/
visualsearch.

https://api.cognitive.microsoft.com/bing/v7.0/images/visualsearch
https://api.cognitive.microsoft.com/bing/v7.0/images/visualsearch
https://api.cognitive.microsoft.com/bing/v7.0/images/visualsearch

Chapter 9

[259]

In either scenario, the following query parameters can be added:

• cc: The two-letter language code of the country where the results should
come from.

• mkt: The market where the results come from. This should always
be specified.

• safeSearch: The filter used to filter adult content. Can be Off, Moderate,
or Strict.

• setLang: The language to use for user interface strings, that is, a two-letter
language code.

In addition, two content headers must be specified. These are Content-Type and
Ocp-Apim-Subscription-Key. The first one must be set to multipart/form-
data;boundary={BOUNDARY}. The latter must specify the API key.

For more information on content headers, please visit https://docs.
microsoft.com/en-us/azure/cognitive-services/bing-
visual-search/overview#content-form-types.

Receiving a response
Once the request has gone through, a JSON object will be returned as a response.

This object will contain two objects: an array of tags and an image string. The image
string is simply the insights token for the image. The list of tags contains a tag name
and a list of actions (insights). A tag, in this context, means category. For instance, if
an actor is recognized in the image, the tag for this might be Actor.

Each action, or insight, describes something of the image. It might describe text in the
image or different products discovered in the image. Each action includes a whole
variety of data.

To see a full list of default insights, please visit https://docs.
microsoft.com/en-us/azure/cognitive-services/bing-
visual-search/default-insights-tag.

https://docs.microsoft.com/en-us/azure/cognitive-services/bing-visual-search/default-insights-tag
https://docs.microsoft.com/en-us/azure/cognitive-services/bing-visual-search/default-insights-tag
https://docs.microsoft.com/en-us/azure/cognitive-services/bing-visual-search/default-insights-tag

Adding Specialized Searches

[260]

Adding a custom search
Bing Custom Search gives you the opportunity to add a powerful, tailored search
experience to your own applications. It allows you to search specifically for topics
you care about.

By using the portal at https://www.customsearch.ai/, you can create a custom
view of the web.

Typical workflow
If you want to build a custom search web page, the following steps describe the
typical workflow.

1. Create a custom search instance: This can be done at the portal linked in the
previous section.

2. Add active entries: This is a list of sites that should be included in the
search results.

3. Add blocked entries: This is a list of sites that should be excluded from the
search results.

4. Add pinned entries: If any search term should have websites pinned to the
top of the search result, it should be specified in the pinned entries section.

5. Configure hosted UI: Set the layout, color theme, and other options for the
hosted UI.

6. Publish the search instance: Publish the custom search instance.

Consuming the search instance
There are three ways to consume the custom search instance.

The first, and easiest option, is to integrate a JavaScript snippet. Once you have
published the search instance, you will be provided with a pre-configured JavaScript
snippet, rendering the hosted UI. This can be pasted into your existing web page.
This will render the search form on your website.

Another option is to link to the custom HTML site directly. This is the link used in a
JavaScript snippet, but it is only used directly.

The last option is to use the REST API directly from your own code. We will not go
into deeper details on this in this book.

https://www.customsearch.ai/

Chapter 9

[261]

Summary
In this chapter, we have looked at the different Bing Search APIs. We started by
looking at how we can use the Bing Web Search API to search for all kinds of
content. Next, we found the latest news, based on query strings and categories. From
there, we moved on to image and video searches. In addition, we looked at how to
enhance the user experience by adding autosuggestions. We did this by using the
Bing Autosuggestion API. Finally, we briefly introduced you to Bing Visual Search
and Bing Custom Search.

In the next and final chapter, we will wrap things up. We will complete our
smart-house application by connecting the pieces. We will also take a look
at the road ahead.

[263]

Connecting the Pieces
The previous chapter focused on the last API umbrella, covering Bing Search APIs.
Throughout this chapter, we will connect the pieces. Our smart-house application
can currently utilize several APIs, but mostly individually. We will see how to
connect LUIS, image analysis, Bing News Search, and Bing Speech APIs. We will
also look at the next steps that you can take after completing this book.

In this chapter, we will learn about the following topics:

• Making an application smarter, by connecting several APIs
• Real-life applications utilizing Azure Cognitive Services
• Next steps

Completing our smart-house application
Until now, we have seen all the different APIs, mostly as individual APIs. The whole
idea behind the smart-house application is to utilize several APIs at the same time.

Throughout this chapter, we will add a new intent in LUIS. This intent is for getting
the latest news for different topics.

Next, we want to actually search for news, using the Bing News API. We will do so
by allowing the end user to speak a command, converting spoken audio to text, with
the Bing Speech API.

When we find a news article, we want to get the headline, publishing date, and
description. If there is a corresponding image to the article, we want to get a
description of the image. We will do this by adding the Computer Vision API.

With all the news article information in place, we want to get that read back to us.
We will do this by converting text to spoken audio.

Connecting the Pieces

[264]

Creating an intent
Let us start by adding our new intent. Head over to https://www.luis.ai, and
log on with the credentials created in Chapter 4, Letting Applications Understand
Commands. From the front page, go into your smart-house application.

Before we start creating the intent, we need to add a new entity. As we want the
possibility to get updates on news within certain topics, we will add a NewsCategory
entity, as shown in the following screenshot:

As this entity will work on its own, we do not need any children.

Now we can add a new intent. Go to Intents on the left-hand side and click Add
intent. This will open the intent creation dialog. Enter a fitting name for the intent,
such as GetNews:

https://www.luis.ai

Chapter 10

[265]

We also need to add an example command:

Add five or six more examples of how you would utter this intent. Make sure you
train the model before continuing.

You can verify the model for testing by going to Test in the right-hand side.

Updating the code
With the new intent, we can start to update the smart-house application.

Executing actions from intents
The first step we need to do is to add an enum variable containing the intents. Create
a new file called LuisActions.cs, in the Model folder, and add the following content
to it:

 public enum LuisActions {
 None, GetRoomTemperature, SetRoomTemperature, GetNews
 }

If you have any other intents defined, add them as well.

This enum will be used later, to see which action to execute when triggered. For
instance, if we ask to get the latest sports news, GetNews will be triggered, which
will go on to retrieve news.

To make things a bit easier for ourselves, we are going to use the existing LUIS
example for the rest of the chapter. An alternative would be to add this to the
HomeView, where we could continuously listen to spoken commands from the users.

Connecting the Pieces

[266]

In order to trigger an action, we need to open the LuisViewModel.cs file. Find the
OnLuisUtteranceResultUpdated function. Let us update it to the following:

 private void OnLuisUtteranceResultUpdated(object sender,
LuisUtteranceResultEventArgs e)
 {
 Application.Current.Dispatcher.Invoke(async () => {
 StringBuilder sb = new StringBuilder(ResultText);

 _requiresResponse = e.RequiresReply;

 sb.AppendFormat("Status: {0}\n", e.Status);
 sb.AppendFormat("Summary: {0}\n\n", e.Message);

At this time, we have not added anything new. We have removed the output of
entities, as we do not need this anymore.

If we find that any actions have been triggered, we want to do something. We call a
new function, TriggerActionExecution, passing on the name of the intent as
a parameter:

 if (!string.IsNullOrEmpty(e.IntentName))
 await TriggerActionExectution(e.IntentName, e.EntityName);

We will get back to this function shortly.

Complete OnLuisUtteranceResultUpdated by adding the following code:

 ResultText = sb.ToString();
 });
 }

Again, you should see that there are no new features. We have, however, removed
the last else clause. We do not want to have the application speak the summary to
us anymore.

Create the new TriggerActionExecution function. Let it accept a string as the
parameter, and have it return a Task. Mark the function as async:

 private async Task TriggerActionExectution(string intentName) {
 LuisActions action;
 if (!Enum.TryParse(intentName, true, out action))
 return;

Here, we parse the actionName (intent name). If we have not defined the action, we
will not do anything else.

Chapter 10

[267]

With an action defined, we go into a switch statement to decide what to do. As we
are only interested in the GetNews case, we break out from the other options:

 switch(action) {
 case LuisActions.GetRoomTemperature:
 case LuisActions.SetRoomTemperature:
 case LuisActions.None:
 default:
 break;
 case LuisActions.GetNews:
 break;
 }
 }

Make sure that the code compiles before continuing.

Searching news on command
Next, we will need to modify the Luis.cs file. As we have defined an entity for the
news topic, we want to ensure that we get this value from the LUIS response.

Add a new property to LuisUtteranceResultEventArgs:

 public string EntityName { get; set; }

This will allow us to add the news topic value, if received.

We need to add this value. Locate ProcessResult in the Luis class. Modify the if
check to look like the following:

 if (!string.IsNullOrEmpty(result.TopScoringIntent.Name)) {
 var intentName = result.TopScoringIntent.Name;
 args.IntentName = intentName;
 }

 else {
 args.IntentName = string.Empty;
 }

 if(result.Entities.Count > 0) {
 var entity = result.Entities.First().Value;

 if(entity.Count > 0) {
 var entityName = entity.First().Value;
 args.EntityName = entityName;
 }
 }

Connecting the Pieces

[268]

We make sure that the intent name, of the top-scoring intent, is set, and pass it on as
an argument to the event. We also check if there is any entities set, and if so, pass
on the first one. In a real-life application, you would probably check other entities
as well.

Back into the LuisViewModel.cs file, we can now account for this new property. Let
the TriggerActionExecution method accept a second string parameter. When
calling the function, we can add the following parameter:

 await TriggerActionExectution(e.IntentName, e.EntityName);

To be able to search for news, we need to add a new member of the BingSearch
type. This is the class we created in the previous chapter:

 private BingSearch _bingSearch;

Create the object in the constructor.

Now we can create a new function, called GetLatestNews. This should accept a
string as the parameter, and return Task. Mark the function as async:

private async Task GetLatestNews(string queryString)
{
 BingNewsResponse news = await _bingSearch.SearchNews (queryString,
SafeSearch.Moderate);

 if (news.value == null || news.value.Length == 0)
 return;

When this function is called, we SearchNews on the newly created _bingSearch
object. We pass on the queryString, which will be the action parameter, as the
parameter. We also set the safe search to Moderate.

A successful API call will result in a BingNewsResponse object, which will contain an
array of news articles. We are not going into more details on this class, as we covered
it in Chapter 9, Adding Specialized Searches.

If no news is found, we simply return from the function. If we do find news, we do
the following:

 await ParseNews(news.value[0]);

We call a function, ParseNews, which we will get back to in a bit. We pass on the first
news article, which will be parsed. Ideally, we would go through all the results, but
for our case, this is enough to illustrate the point.

Chapter 10

[269]

The ParseNews method should be marked as async. It should have the return type
Task, and accept a parameter of type Value:

private async Task ParseNews(Value newsArticle) {
 string articleDescription = $"{newsArticle.name}, published
{newsArticle.datePublished}. Description:
 {newsArticle.description}. ";

 await _ttsClient.SpeakAsync(articleDescription, CancellationToken.
None);
}

We create a string containing the headline, the publishing date, and the news
description. Using this, we call SpeakAsync on the _ttsClient to have the
application read the information back to us.

With this function in place, we can execute the action. In TriggerActionExecuted,
call GetLatestNews from the GetNews case. Make sure to await the call.

With the application compiling, we can go for a test run:

Naturally, the effects are not as good in an image as in real life. With a microphone
and speakers or headset connected, we can ask for the latest news, using audio, and
get the news read back to us with audio.

Connecting the Pieces

[270]

Describing news images
News articles often come with corresponding images as well. As an addition to what
we already have, we can add image analysis.

The first step we need to do is to add a new NuGet package. Search for the
Microsoft.ProjectOxford.Vision package, and install this using NuGet
Package Manager.

In the LuisViewModel.cs file, add the following new member:

private IVisionServiceClient _visionClient;

This can be created in the constructor:

_visionClient = new VisionServiceClient("FACE_API_KEY", "ROOT_URI");

This member will be our access point to the Computer Vision API.

We want to get a string describing the image in the ParseNews function. We can
achieve this by adding a new function, called GetImageDescription. This should
accept a string parameter, which will be the image URL. The function should have
return type Task<string> and be marked as async:

private async Task<string> GetImageDescription(string contentUrl)
{
 try {
 AnalysisResult imageAnalysisResult = await _visionClient.
AnalyzeImageAsync(contentUrl, new List<VisualFeature>() {
VisualFeature.Description });

In this function, we call AnalyzeImageAsync on the _visionClient. We want
the image description, so we specify this in a list of VisualFeature. If the call
succeeds, we expect an object of type AnalysisResult. This should contain image
descriptions, ordered by probability of correctness.

If we do not get any descriptions, we return none. If we do have any descriptions, we
return the text of the first one:

 if (imageAnalysisResult == null || imageAnalysisResult.
Description?.Captions?.Length == 0)
 return "none";
 return imageAnalysisResult.Description.Captions.First().Text;
}

Chapter 10

[271]

If any exceptions occur, we print the exception message to the debug console.
We also return none to the caller:

 catch(Exception ex) {
 Debug.WriteLine(ex.Message);
 return "none";
 }
 }

In ParseNews, we can get the image description by adding the following at the top of
the function:

string imageDescription = await GetImageDescription (newsArticle.
image.thumbnail.contentUrl);

With an image description, we can modify the articleDescription string to
the following:

 string articleDescription = $"{newsArticle.name}, published
 {newsArticle.datePublished}. Description:
 {newsArticle.description}. Corresponding image is

 {imageDescription}";

Running the application and asking for news will now also describe any images.
That concludes our smart-house application.

Real-life applications using Azure
Cognitive Services
There are some examples of applications that currently utilize Azure Cognitive
Services. We will look at some of them here.

Uber
Uber is an app that was created to match drivers with people looking for rides.
People can open the app, and request a ride. Drivers (registered Uber drivers, that is)
located nearby can then pick up the person requesting a ride. After a ride, the driver
is paid through the app.

Connecting the Pieces

[272]

To ensure a more secure experience, a photo of the driver is sent to the passenger.
This way, passengers can feel safe that the driver is who they say they are. This may
cause problems, as drivers may not always look like their photo. They may have
grown a beard, or shaved off a beard, or similar changes may have occurred.

To account for this, Uber decided to add a new feature. Each driver needs to sign in
when they are using the app. Doing so will periodically request them to take a selfie.
This image is then sent to the Face API for verification. If the verification fails, due
to glare from glasses, or something similar, the driver is requested to remove
such items.

According to Uber, they spent around 3 weeks implementing the Face API into
their systems.

DutchCrafters
DutchCrafters is an American company that sells handmade furniture. They do have
a physical store, but more importantly, they have an e-commerce website. This site
contains more than 10,000 products, where each product can be customized.

They had a low conversion rate on their site, and as an attempt to improve this, they
used manual recommendations. Manually adding recommended products on each
product is rather time-consuming. Looking into their options, they discovered the
Recommendations API from Azure Cognitive Services.

They were already relying on REST APIs, and as such implementing the
Recommendations API was quick. DutchCrafters have stated that they
spent 5 days in total implementing the functionality needed.

As their site was already built with ASP.NET and running on IIS, they decided
to move everything to the cloud. Doing so has improved their site, and with the
addition of the Recommendations API, their foundation has improved.

At the time of writing, they are utilizing the You might like this feature,
recommending 10 items per product. They are also looking into adding real-time
recommendations, based on users' history, which we have seen is possible using the
Recommendations API.

A direct result of implementing the Recommendations API is an improvement of the
conversion rate. They have seen a three times increase in the conversion rate, with
about 15% of the sales coming from recommended products.

Chapter 10

[273]

CelebsLike.me
CelebsLike.me is a web application from Microsoft. It was primarily created to show
off some of the features of Azure Cognitive Services.

The purpose of the application is to find your celebrity doppelganger. You can
upload a photo, or use one found online, and the app will match faces found with
similar celebrities.

The app takes advantage of the Bing Image Search API, the Computer
Vision API, and the Face API. It recognizes celebrity faces in web images.
When someone uploads a photo of themselves, facial features will be used
to find matching celebrities.

Pivothead
Pivothead is a company working with wearable technology. They have combined
eyeglasses with high-quality cameras, providing still images and videos. These
glasses allow people to capture vivid point-of-view content of what they see.
Pivothead currently has customers in the consumer market, but also in the
business market.

Over time, Pivothead had seen growing success, but could not seem to create a
device to help visually impaired and/or blind people. They struggled with the
technology, as machine learning itself can be quite complex. When they learned of
Azure Cognitive Services, they were able to reach a breakthrough.

If a person is wearing the glasses, they can slide a finger along an earpiece. This will
capture an image of what is in front of the person. The glasses utilize five APIs from
Azure Cognitive Services. These are Computer Vision, Emotion, Face, Speech, and
LUIS.

With the image of whatever is in front of a person, the image is analyzed. The person
wearing the glasses will then get the image described through an earpiece. If a
person is detected, the gender, how they look, what they are doing, their age, and
their emotion is detected and described. If text is detected, it will be read back to
the person.

According to Pivothead, they spent around three months months developing
prototypes of these glasses. They also stated that they could have done it in three
weeks, had they been working with it full-time.

Connecting the Pieces

[274]

Zero Keyboard
The Zero Keyboard app was created by a Finnish company called Blucup. The
company had discovered a common problem for salespeople. They wanted a way for
salespeople to capture customer data and generate leads while on the go.

They started developing an app for iOS, Android, and Windows Phone to help
solve this problem. The idea behind the app is to record customer information,
which is then automatically stored in the Customer Relationship Management
(CRM) system.

At the time of development, Azure Cognitive Services emerged, and Blucup decided
to give it a go. Earlier, they had tried a few types of open source speech recognition
software and image analysis software. None provided the quality and features
needed.

Using the Computer Vision API, the app can take pictures of business cards or
identification badges, and identify text. This data is directly uploaded to their CRM
system. By using the Speech API, sales representatives can also record voice memos
for each contact.

Blucup states that Azure Cognitive Services delivers very accurate data. In addition,
they have been able to implement the needed APIs rapidly, as the APIs
are a good match from a developer standpoint.

The common theme
As you can see from all these examples, Azure Cognitive Services provides
good quality. It is also quick to implement, which is important when considering
new APIs.

Another great thing about the APIs is that you do not need to be a data scientist
to use them. Even though the technology powering the APIs is complex, we, as
developers, do not need to think about it. We can focus on what we do best.

Where to go from here
By now, you should know the basics of Azure Cognitive Services, enough to get
started with building your own applications.

Chapter 10

[275]

A natural way forward is to play around with the different APIs. The APIs are
continuously improved and worked upon. It is worth going through the API
documentation, to keep up with changes and to learn more. In addition, Microsoft
keeps adding new APIs to the services. Through the writing process of this book, I
have seen three new APIs added. Those might be interesting to look into.

Another possibility is to build upon the smart-house application that we have started
on. We have put down some groundwork, but there are still a lot of opportunities.
Perhaps you can work on improving what we have already got. Maybe you can see
some opportunities to mix in other APIs, which we have covered.

Reading through this book might have given you some ideas of your own. A great
way forward would be to implement them.

As we have seen, there are many possible areas to use the APIs for. Only the
imagination limits the usage.

Perhaps this book has triggered a deeper interest in machine learning. Everything we
have seen so far is machine learning. Even though it is more complex than just using
APIs, it is certainly worth exploring further.

Summary
With this chapter, we have completed our journey. We created a new intent for news
retrieval. We learned how to deal with an action, triggered from this intent. Based
on voice commands, we managed to fetch the latest news, for one topic, and have
the smart-house application read it back to us. Next, we went on to see what kind
of real-life applications are utilizing Azure Cognitive Services today. Finally, we
concluded this chapter by looking at some natural next steps that you can take after
completing this book.

[277]

LUIS Entities
In this appendix, we will list the prebuilt entities in LUIS.

LUIS prebuilt entities
The following list shows all the available entities that can be added to your
application:

• DatetimeV2

• Datetime

• Number

• Ordinal

• Percentage

• Temperature

• Dimension

• Money

• Age

• Geography

• Encyclopedia

• URL

• Email

• Phone Number

A complete and updated list of prebuilt entities can be found at https://docs.
microsoft.com/en-us/azure/cognitive-services/LUIS/pre-builtentities.

https://docs.microsoft.com/en-us/azure/cognitive-services/LUIS/pre-builtentities
https://docs.microsoft.com/en-us/azure/cognitive-services/LUIS/pre-builtentities

[279]

License Information
This appendix contains several third-party libraries, which have different licenses.
All libraries, along with the applicable licenses, are covered in the next few pages.

Video Frame Analyzer
Copyright (c) Microsoft. All rights reserved.

Licensed under the MIT license.

Azure Cognitive Services: http://www.microsoft.com/cognitive

Azure Cognitive Services GitHub: https://github.com/Microsoft/Cognitive

Copyright (c) Microsoft Corporation

All rights reserved.

MIT License:

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

http://www.microsoft.com/cognitive
https://github.com/Microsoft/Cognitive

License Information

[280]

THE SOFTWARE IS PROVIDED ""AS IS"", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

OpenCvSharp3
This license has also been called the New BSD License or Modified BSD License.
See also the 2-clause BSD License.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Appendix B

[281]

Newtonsoft.Json
The MIT License (MIT)

Copyright (c) 2007 James Newton-King

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

NAudio
Microsoft Public License (Ms-PL)

This license governs use of the accompanying software. If you use the software, you
accept this license. If you do not accept the license, do not use the software.

Definitions
The terms reproduce, reproduction, derivative works, and distribution have the
same meaning here as under U.S. copyright law.

A contribution is the original software, or any additions or changes to the software.

A contributor is any person that distributes its contribution under this license.

Licensed patents are a contributor's patent claims that read directly on its contribution.

License Information

[282]

Grant of Rights
(A) Copyright Grant - Subject to the terms of this license, including the license
conditions and limitations in section 3, each contributor grants you a non-exclusive,
worldwide, royalty-free copyright license to reproduce its contribution, prepare
derivative works of its contribution, and distribute its contribution or any derivative
works that you create.

(B) Patent Grant - Subject to the terms of this license, including the license conditions
and limitations in section 3, each contributor grants you a non-exclusive, worldwide,
royalty-free license under its licensed patents to make, have made, use, sell, offer
for sale, import, and/or otherwise dispose of its contribution in the software or
derivative works of the contribution in the software.

Conditions and Limitations
(A) No Trademark License: This license does not grant you rights to use any
contributor's name, logo, or trademarks.

(B) If you bring a patent claim against any contributor over patents that you claim
are infringed by the software, your patent license from such contributor to the
software ends automatically.

(C) If you distribute any portion of the software, you must retain all copyright,
patent, trademark, and attribution notices that are present in the software.

(D) If you distribute any portion of the software in source code form, you may do
so only under this license by including a complete copy of this license with your
distribution. If you distribute any portion of the software in compiled or object code
form, you may only do so under a license that complies with this license.

(E) The software is licensed as-is. You bear the risk of using it. The contributors give
no express warranties, guarantees or conditions. You may have additional consumer
rights under your local laws which this license cannot change. To the extent
permitted under your local laws, the contributors exclude the implied warranties of
merchantability, fitness for a particular purpose and non-infringement.

283

Another Book You May Enjoy
If you enjoyed this book, you may be interested in another book by Packt:

Learning Azure Cosmos DB

Shahid Shaikh

ISBN: 978-1-78847-617-1

 f Build highly responsive and mission-critical applications
 f Understand how distributed databases are important for global scale and

low latency
 f Understand how to write globally distributed applications the right way
 f Implement comprehensive SLAs for throughput, latency, consistency,

and availability
 f Implement multiple data models and popular APIs for accessing and

querying data
 f Implement best practices covering data security in order to detect,

prevent and respond to database breaches

Another Book You May Enjoy

284

Azure for Architects

Ritesh Modi

ISBN: 978-1-78839-739-1

 f Familiarize yourself with the components of the Azure Cloud platform
 f Understand the cloud design patterns
 f Use enterprise security guidelines for your Azure deployment
 f Design and implement Serverless solutions
 f See Cloud architecture and the deployment pipeline
 f Understand cost management for Azure solutions

Another Book You May Enjoy

285

Leave a review – let other readers know
what you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

[287]

Index
A
academic API

attributes, defining 218
data, adding 219
using 204

academic entities
distribution of attributes,

calculating from 212-216
finding, in query expressions 209-212

AnalysisResult variable 45
API key

registration link 173
APIs

overview 19
vision 19

application
preparing, for web searches 234, 235

audio to text conversion 127, 128
automated moderation 86
autosuggest

adding, to user interface 253
autosuggestions 253
Azure

Recommendation Solution template,
deploying 187-189

Azure publish settings file
reference 224

B
BCP-47 language code 48
Bing Speech API

about 20
audio output format 135
audio to text conversion 128

communicating with 128-135
error codes 136
LUIS based on spoken commands,

utilizing 136-139
speak back functionality, enabling 135
supported languages 136
text to audio conversion 128

Bing Spell Check API 21
Bing Visual Search

about 258
request, sending 258
response, receiving 259
used, for searching visual content 258

boilerplate code
setting up 2-8

C
CelebsLike.me 273
classifier

building 90
Cognitive Services

implementing 1, 2
common core setup

about 163
data contracts 167
new project, creating 164
web requests 164-166

common user interface
used, for searching images 245
used, for searching videos 245

composite entities 107
Computer Vision API

about 36
used, for analyzing image 36

[288]

Conditions and Limitations 282
content moderation APIs

about 20
image moderation API 86
text moderation API 86
types 85
URL 85
using 85

contribution 281
contributor 281
custom acoustic model

creating 159
Customer Relationship

Management (CRM) 274
Customer-to-Item

Recommendations (U2I) 186
custom image classifiers

building 90
model, improving 90
trained model, using 91

custom language model
creating 160
deploying 160

custom search
adding 260
instance, consuming 260
workflow 260

Custom Vision service
about 20
about 90
URL 90

D
detected faces

feedback, obtaining 25-33
DutchCrafters 272

E
enrolling process 146
entities

used, for recognizing key data 105-108
errors 258

F
Face API

about 52
emotions, recognizing from faces 77
exploring 52
faces, detecting 9-18
information, retrieving from

detected faces 53, 54
request parameters 53
similar faces, finding 57-61
similar faces, grouping 62-64
two faces of same person, detecting 54-57

face-to-face verification 54
face-to-person verification 54
FAQs

answering, QnA Maker used 225
knowledge base, creating from 226, 227

filters 257
filters, search commonalities

freshness 257
safe search 257

G
generic image analysis

enabling 40-46
Grant of Rights 282

H
human moderation 86
hybrid moderation 86

I
image analysis, with Computer Vision API

about 36
celebrities, recognizing with domain

models 47, 48
chapter example project, setting up 36-39
generic image analysis 40-46
image thumbnails, generating 51, 52
optical character recognition (OCR),

utilizing 48-50

[289]

image moderation API
about 86
using 86

images
searching 244-250
searching, with common user interface 245

image thumbnails
generating 51, 52

index
building 219

intents
about 108
creating 264, 265
used, for recognizing user wants 108, 109

items
recommending, based on prior

activities 200
Item-to-Item Recommendations (I2I) 186

K
KES installer

download link 218
knowledge APIs

about 22
knowledge exploration API 22, 23
Project Academic Knowledge API 22
Project Custom Decision Service 23
QnA Maker 23
recommendations solution API 23

knowledge base
creating, from frequently asked

questions 226, 227
model, publishing 230
model, training 228, 229

knowledge exploration API 22
Knowledge Exploration Service (KES)

backend, creating for academic API 218
deploying, to Microsoft Azure 224

L
language domain, APIs

about 21
Bing Spell Check API 21
LUIS API 21
text analytics API 22
translator text API 22

languages
detecting 181
supported languages, obtaining 182-184
working with 181

Language Understanding Intelligent
Service (LUIS)

about 20, 21, 103,
prebuilt entities 277
reference 104
URL, for prebuilt entities 277

language-understanding models
application, creating 104, 105
connecting, to smart house

application 116-120
creating 103
development, simplifying

with prebuilt models 109
intents, using 108, 109
key data, recognizing with entities 105-108
prebuilt domains, using 111, 112
publishing 113-116
training 113-116

language-understanding models,
improvement

active learning 124, 125
performance problems, resolving 122
performance, visualizing 121, 122
through active usage 121

language-understanding models,
performance problems

incorrect utterance labels, searching 123
labeled utterances, adding 123
model features, adding 123
resolving 122
schema, modifying 123

Licensed patents 281
list entity 107
List manager API 89
local hosting 221, 222

M
Microsoft Academic Graph (MAG) 204
Microsoft Azure

Knowledge Exploration Service (KES),
deploying to 224

[290]

Microsoft Azure cloud service
reference 224

Azure Cognitive Services
about 275
used, for real-life applications 271

Model-View-ViewModel (MVVM)
pattern 2

moderation tools
about 86
List manager API 89
review tool 87
Workflow API 89

mood identifying, smart-house application
about 81-83
images, obtaining from web camera 78-80

N
natural language 220
natural language queries

interpreting 205-209
NAudio 146, 281
news

obtaining 240
obtaining, from categories 243
obtaining, from queries 240-242

Newtonsoft.Json 281

O
OpenCvSharp3 280
optical character recognition (OCR)

about 48
utilizing 48-50

P
pattern features 108
personalized recommendations

catalog data, adding 189, 190
completion of training, verifying 193, 194
model, training 191
providing 186
training process, starting 191-193
usage data, uploading 190

PersonGroup property 66
person through speech

verifying 153-158

Pivothead 273
Postman

download link 191
prebuilt domains

using 111, 112
Project Academic Knowledge API

about 22
entity attributes 216

example project, setting up 204, 205
using 204

Project Custom Decision Service 23

Q
QnA Maker

about 23
reference 225
used, for answering FAQs 225

queries
suggesting 254, 255

query expressions
academic entities, finding in 209-212

R

real-life applications, Micro-
soft
Cognitive Services

CelebsLike.me 273
DutchCrafters 272
Pivothead 273
theme 274
Uber 271
using 271
Zero Keyboard 274

recommendations
consuming 195-200

Recommendation Solution template
deploying, in Azure 187-189

recommendations, scenarios
Customer-to-Item

Recommendations (U2I) 186
Item-to-Item Recommendations (I2I) 186

recommendations solution API 23
request parameters 44

[291]

review tool
about 87
URL 87
using 87, 88

S
Search APIs

Bing Autosuggest 24
Bing Custom Search API 25
Bing Entity Search 25
Bing Image Search API 24
Bing News Search 24
Bing Video Search 24
Bing Visual Search API 25
Bing Web Search 24

search commonalities
about 255
errors 258
filters 257
languages 256
pagination 256

service
testing 221, 222

shimat 78
smart-house application

actions, executing from intents 265, 266
additional functionality 74
code, updating 265
completing 263
creating 66
emotions, recognizing from images 78
faces, associating with person 72
identification, adding 66
intent, creating 264
language-understanding models,

connecting to 116-120
mood identifying, from image 81-85
new persons, adding 70
news images, describing 270
news, searching on command 267-269
people to be identified, adding 66
person groups, adding 68, 69
person group, training 72, 73
person, identifying 74-76

used, for searching web 233
view, creating 66-68

Speaker Recognition API
about 21
reference 139
using 139-141

speakers
identifying 139-141, 149-152
profiles, adding 141-146
profiles, enrolling 146-149

Speech APIs
about 20
Bing Speech API 20
speaker recognition API 21
translator speech API 21

speech recognition
custom acoustic model, creating 159
customizing 159
custom language model, creating 160

Speech Synthesis Markup Language
(SSML) template 29

spelling errors
correcting 168-171

supported languages
reference 161

T
text

script, converting 180
translating 179, 180

text analytics API 22
text moderation API 86
text to audio conversion 127, 128
textual analysis API

information, extracting through 172
key phrases, extracting from text 175-177
language, detecting 173-175
negative text, detecting 177, 178
positive text, detecting 177, 178

Translator Speech API
about 21
reference 161
using 161

translator text API 22
trending news 244

[292]

U
Uber 272
user content moderation

automated moderation 86
human moderation 86
hybrid moderation 86
moderation tools 86
performing, automatically 85

user interface (UI)
about 5
autosuggest, adding 253

V
Video Frame Analyzer 279, 280
Video Indexer

about 93
features 93, 94
key concepts 94
overview 93
scenarios 94
using 95, 96
using, via web portal 96-98
Video Indexer API, using 98-101

Video Indexer API
about 20
reference 98

Video Indexer, key concepts
blocks 95
breakdown 95
keywords 95
sentiments 95
summarized insights 95

videos
searching 244, 250-252
searching, with common user

interface 244, 245
vision flags

about 19
computer vision API 19
content moderator API 20
custom vision service 20
Face API 19
video indexer API 20

visual content
searching, with Bing Visual Search 258

W
web

searching 236-240
searching, with smart-house

application 233
web portal

Video Indexer, using through 96-98
web searches

application, preparing 234, 235
Windows Presentation Foundation (WPF) 2
Workflow API 89

Z
Zero Keyboard 274

	Cover
	Copyright
	Packt Upshell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Getting Started with Microsoft Cognitive Services
	Cognitive Services in action for fun and life-changing purposes
	Setting up the boilerplate code
	Detecting faces with the Face API
	An overview of different APIs
	Vision
	Computer vision
	Face
	Video indexer
	Content moderator
	Custom vision service

	Speech
	Bing Speech
	Speaker recognition
	Translator speech API

	Language
	Bing Spell Check
	Language Understanding Intelligent Service (LUIS)
	Text analytics
	Translator Text API

	Knowledge
	Project Academic Knowledge
	Knowledge exploration
	Recommendations solution
	QnA Maker
	Project Custom Decision Service

	Search
	Bing Web Search
	Bing Image Search
	Bing Video Search
	Bing News Search
	Bing Autosuggest
	Bing Visual Search
	Bing Custom Search
	Bing Entity Search

	Getting feedback on detected faces
	Summary

	Chapter 2: Analyzing Images to Recognize a Face
	Analyze an image using the Computer Vision API
	Setting up a chapter example project
	Generic image analysis
	Recognizing celebrities using domain models
	Utilizing optical character recognition
	Generating image thumbnails

	Diving deep into the Face API
	Retrieving more information from the detected faces
	Deciding whether two faces belong to the same person
	Finding similar faces
	Grouping similar faces

	Adding identification to our smart-house application
	Creating our smart-house application
	Adding people to be identified
	Creating a view
	Adding person groups
	Adding new persons
	Associating faces with a person
	Training the model
	Additional functionality

	Identifying a person

	Knowing your mood using the Face API
	Getting images from a web camera
	Letting the smart house know your mood

	Automatically moderating user content
	Types of content moderation APIs
	Image moderation
	Text moderation

	Moderation tools
	Using the review tool
	Other tools

	Building your own image classifiers
	Building a classifier
	Improving the model
	Using the trained model

	Summary

	Chapter 3: Analyzing Videos
	Diving into Video Indexer
	General overview
	Typical scenarios
	Key concepts

	Unlocking video insights using Video Indexer
	How to use Video Indexer
	Through a web portal
	Video Indexer API

	Summary

	Chapter 4: Letting Applications Understand Commands
	Creating language-understanding models
	Creating an application
	Recognizing key data using entities
	Understanding what the user wants using intents
	Simplifying development using prebuilt models
	Prebuilt domains

	Training a model
	Training and publishing the model
	Connecting to the smart house application
	Model improvement through active usage
	Visualizing performance
	Resolving performance problems
	Active learning

	Summary

	Chapter 5: Speaking with Your Application
	Converting text to audio and vice versa
	Speaking to the application
	Letting the application speak back
	Audio output format
	Error codes
	Supported languages

	Utilizing LUIS based on spoken commands

	Knowing who is speaking
	Adding speaker profiles
	Enrolling a profile
	Identifying the speaker

	Verifying a person through speech
	Customizing speech recognition
	Creating a custom acoustic model
	Creating a custom language model
	Deploying the application

	Translating speech on the fly
	Summary

	Chapter 6: Understanding Text
	Setting up a common core
	New project
	Web requests
	Data contracts

	Correcting spelling errors
	Extracting information through textual analysis
	Detecting language
	Extracting key phrases from text
	Learning whether a text is positive or negative

	Translating text on the fly
	Translating text
	Converting text script
	Working with languages
	Detecting the language
	Getting supported languages

	Summary

	Chapter 7: Building Recommendation Systems for Businesses
	Providing personalized recommendations
	Deploying the Recommendation Solution template in Azure
	Importing catalog data
	Importing usage data
	Training a model
	Starting to train
	Verifying the completion of training

	Consuming recommendations
	Recommending items based on prior activities

	Summary

	Chapter 8: Querying Structured Data in a Natural Way
	Tapping into academic content using the academic API
	Setting up an example project

	Interpreting natural language queries
	Finding academic entities in query expressions
	Calculating the distribution of attributes from academic entities
	Entity attributes
	Creating the backend using the Knowledge Exploration Service
	Defining attributes
	Adding data
	Building the index
	Understanding natural language
	Local hosting and testing
	Going for scale
	Hooking into Microsoft Azure
	Deploying the service

	Answering FAQs using QnA Maker
	Creating a knowledge base from frequently asked questions
	Training the model
	Publishing the model
	Summary

	Chapter 9: Adding Specialized Searches
	Searching the web using the
smart-house application
	Preparing the application for web searches
	Searching the web

	Getting the news
	News from queries
	News from categories
	Trending news

	Searching for images and videos
	Using a common user interface
	Searching for images
	Searching for videos

	Helping the user with autosuggestions
	Adding autosuggest to the user interface
	Suggesting queries

	Search commonalities
	Languages
	Pagination
	Filters
	Safe search
	Freshness

	Errors

	Searching for visual content using Bing Visual Search
	Sending a request
	Receiving a response

	Adding a custom search
	Typical workflow
	Consuming the search instance

	Summary

	Chapter 10: Connecting the Pieces
	Completing our smart-house application
	Creating an intent
	Updating the code
	Executing actions from intents
	Searching news on command
	Describing news images

	Real-life applications using Microsoft Cognitive Services
	Uber
	DutchCrafters
	CelebsLike.me
	Pivothead
	Zero Keyboard
	The common theme

	Where to go from here
	Summary

	Appendix A: LUIS Entities
	LUIS prebuilt entities

	Appendix B: License Information
	Video Frame Analyzer
	OpenCvSharp3
	Newtonsoft.Json
	NAudio
	Definitions
	Grant of Rights
	Conditions and Limitations

	Another Book You May Enjoy
	Index

