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Introduction

In this paper, we will explore a technology called, 

“Preemption-Threshold Scheduling,” and how it can 

be used to reduce preemption overhead, while still 

enabling applications to meet real-time deadlines. 

Real- time embedded systems typically employ a 

collection of application tasks or threads that must 

complete their work before a certain deadline. Hard 

real-time systems demand that all deadlines be met 

with absolute certainty, even under worst case 

conditions. Real-time systems generally employ 

preemptive scheduling to guarantee that the most 

critical threads get immediate attention, enabling 

them to meet their deadlines. However, preemptive 

scheduling can result in significant context switch 

overhead under certain conditions. In this paper, we 

discuss a scheduling technology that reduces 

overhead while maintaining the ability to meet all 

deadlines, even under worst case conditions
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Real-Time Operating System (RTOS) Concepts 

Before addressing Preemption-Threshold Scheduling, it is important to understand some basic and 

advanced RTOS technology concepts, ranging from threads, priorities, multithreading, and preemption to 

Preemption Threshold Scheduling, an interesting technology that is the focus of this paper. 

In this paper, we use the term “thread,” but some RTOSes might use the term “task.” In most cases, these 

are synonymous. A thread is a function or sort of a main program, that executes until it ends, or until it is 

interrupted by something else. Sometimes, threads can be blocked or stalled while waiting for an event of 

some sort. Threads share an address space, and run pseudo-concurrently, sharing the CPU. In multicore 

systems, threads might run truly concurrently, one on each core, and then share that core with other 

threads. Threads are used to structure a program in modular pieces, making the application easier to 

manage, and able to be developed by multiple team members. 

Threads can have a number of states: 

1. READY – means the thread is ready to run, not waiting for, nor needing anything else, but it 

is not currently executing instructions; 

2. RUNNING – means the thread is executing instructions 

3. SUSPENDED – means the thread is not ready to run, because it is waiting for something – 

perhaps a message in a queue, a semaphore, a timer to expire, etc. 

4. TERMINATED – means the thread has completed its processing and is not eligible to run. 

Thread Priorities 

Threads are assigned priorities, which indicate their relative importance and the order in which they will 

get access to the CPU if more than one is READY to run. Generally, priorities are integer values, 0-to-N, 

either 0-high or 0-low. In ThreadX, and in this paper, 0 is the highest priority, while higher numbers 

indicate lower priorities. Each thread is assigned a priority when it is created, but the priority can be 

changed dynamically. Multiple threads can be assigned the same priority, or they each can be assigned a 

unique priority. 

Multithreading is a term that indicates that the CPU is being shared by more than one thread. In such a 

system, when a running thread reaches a roadblock, rather than continuing to check for the ability to 

continue (polling), it can yield the CPU to another thread that is READY (not waiting for anything), thereby 

making more efficient use of otherwise wasted CPU cycles. For example, in a simple system with 2 

threads, thread_a and thread_b, suppose thread_a is running and initiates an I/O operation that may take 

many hundreds of cycles to complete. Rather than just wait – in a polling loop – thread_a can be 

suspended until the I/O is complete, while thread_b can be allowed to use the CPU until that time. Once 

the I/O is complete, thread a is resumed. Multithreading enables more efficient use of CPU resources.  
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Preemption and Context Switching 

In a fully preemptive system, when one thread is executing and a different thread, of higher priority,  

becomes READY to run (due to the occurrence of some asynchronous event or an explicit action of the 

running thread), the RTOS 

interrupts, or “preempts” the running thread 

and replaces it with the higher-priority thread. 

The process of doing this is termed a “context 

switch.” In a context switch, the RTOS saves the 

context of the executing thread on that thread’s 

stack, and retrieves the context of the new 

thread, from the new thread’s stack, and loads 

it into the CPU registers and program counter. 

Thus, the executing thread context is switched 

from one to the other. 

The context switch operation is reasonably 

complex, and can take from 50 to 500 cycles, 

depending on the RTOS and the processor. It is 

for this reason that care must be taken to 

optimize context switching operations in an RTOS, and to minimize the need for such operations in the 

application. This is one of the goals of Preemption-Threshold Scheduling. 

Schedulers 

Applications that do not use an RTOS but which are comprised of more than one operation or function – 

essentially a single task or thread – must provide a mechanism for running whichever function needs to 

run at any point in time. A simple sequential loop (“Big Loop”) might be used, or a more sophisticated 

loop that checks status to determine whether a particular function has work to do, skipping those that 

don’t and running those that do. Such loops are forms of schedulers, but they tend to be inefficient and 

unresponsive, especially as the number of threads or functions grows larger. In contrast, an RTOS 

scheduler keeps track of, or quickly determines, which activity to run at any point in time. 

RTOS Schedulers 

Generally, RTOS schedulers are preemptive – that means they make sure that the highest-priority thread 

that is ready to run is the one they let run, and the others wait. RTOS schedulers also can perform round- 

robin scheduling, which is similar to the Big Loop, or a more sophisticated form of round-robin whereby 

individual threads are granted a certain percentage of CPU time rather than allowed to run to completion 

or voluntary suspension. The RTOS scheduler performs context switches when required, and enables 

threads to sleep, to relinquish their CPU use, or to terminate and leave the pool of threads awaiting the 

CPU.  

STEP OPERATION CYCLES 

1 
Save the current thread’s context (ie: GP and FP 

register values and PC) on the stack. 
20 - 100 

2 
Save the current stack pointer in the thread's 

control block. 
2 - 20 

3 Switch to the system stack pointer. 2 - 20 

4 Return to the scheduler. 2 - 20 

5 
Find the highest priority thread that is ready to 

run. 
2 - 50 

6 Switch to the new thread's stack. 2 - 50 

7 Recover the new thread's context. 20 - 100 

8 Return to the new thread at its previous PC. 2 - 40 

9 Other processing 0 - 100 

 TOTAL     50 - 500 
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[sidebar] Types of RTOS Schedulers 

1. Preemptive 

2. Round-Robin 

3. Round-Robin With Time Slicing 

4. Preemption-Threshold [end sidebar] 

The Perils of Preemption 

Preemption generally delivers the fastest response to system events, and is the preferred scheduling 

method for real-time systems. However, preemption carries with it some potential problems, which the 

developer must avoid or properly handle. 

First is thread starvation, where a thread never gets to execute because a higher priority thread never 

finishes. In a fully preemptive system, there is no way to run any thread if a higher priority thread is 

READY. Developers should avoid any condition whereby a high-priority thread might end up in an 

endless loop, or a situation where the thread consumes an undesirable amount of CPU time, preventing 

other threads from getting access to the processor. 

Second, in situations with lots of context switching, overhead can add up. In an example to follow, we will 

examine just such a system with some tools that will enable us to see and measure the overhead. 

Third, priority inversion can occur. Priority inversion is the situation whereby a high-priority thread is 

waiting for a shared resource, but the resource is held by a low priority thread which cannot get time to 

finish its use of the resource due to preemption by an intermediate priority thread. 

A third problem is the preemption of a thread that is executing within a critical section of code. That’s a 

section of code that must be completed once entered, so that no intervening activity can interfere with it 

without the running thread’s awareness. If a thread is preempted while it is running in a critical section, 

the preempting thread might modify related data, and the first thread, when resumed, might see 

inconsistent status. 

Preemption-Threshold Scheduling (PTS) 

To help minimize, or avoid such problems, a modified preemptive scheduling algorithm has been 

developed and incorporated into ThreadX. This scheduling algorithm is called Preemption-Threshold 

Scheduling. In Preemption-Threshold Scheduling, we assign one or more threads a second priority, called 

its “Preemption-Threshold,” that must be exceeded by a preempting thread. The thread’s priority still is 

used to determine the scheduling of that thread among other threads that are READY, or to preempt 

another thread. But by defining a Preemption-Threshold that is a higher priority, preemption by some 

higher-priority threads can be inhibited.  
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Benefits 

Preemption-Threshold Scheduling offers several benefits. It is a tool that may be used by system 

designers in many ways, even beyond those mentioned here, to suit various system use cases. Here are a 

few examples of the benefits of Preemption-Threshold Scheduling: 

1. Reduced Overhead. Preemption-Threshold Scheduling can prevent certain threads from 

preempting a thread, when those preemptions might be excessive and detrimental to system 

performance. In many cases, a group of threads at closely ordered priorities work together better if 

they are not permitted to preempt each other, or if one of them should not be preempted by the 

others. Our example below illustrates this case. 

2. Critical Section Protection. A critical section is a part of a multithreaded program that may not be 

concurrently executed by more than one of the threads. Typically, the critical section accesses a 

shared resource, such as a data structure, a peripheral device, or a network connection, that does 

not allow multiple concurrent accesses. Typically, preemption is disabled during critical section 

access, protecting the section but delaying response to unrelated events. Preemption-Threshold 

Scheduling can be used to prevent preemption among a set of threads, all of which interact with 

the same critical section. Threads dealing with the critical section cannot “step on” each other, but 

they still can be preempted by higher-priority threads that do not use the critical section, thus 

achieving better system responsiveness. 

3. Meet Schedulability Requirements. Real-time systems have timing requirements that must be 

guaranteed. Scheduling and schedulability analysis enables these guarantees to be provided. 

Preemption-Threshold Scheduling has been studied by multiple academic researchers, and a 

number of papers have been published documenting its ability to meet schedulability 

requirements in real-time systems. For further information, please see the lists at the conclusion of 

this paper. 

How it Works 

Here is how Preemption-Threshold Scheduling works. 

Normally, any thread with a priority higher than the 

running thread can preempt it. But with Preemption-

Threshold Scheduling, a running thread can only be 

preempted if the preempting thread has a priority higher 

than the running thread’s Preemption- Threshold. In a 

fully preemptive system, the Preemption-Threshold 

would be equal to the thread’s priority. By introducing a 

Preemption- 

Threshold for a thread, and setting the Preemption-

Threshold higher than the thread’s priority, preemptions 

by threads with priorities in between those two values 

will not be permitted. 

In this example, suppose we have a thread of priority 20, which would normally be preemptable by a  

Priority Comment 

0 

Preemption allowed for threads with priorities 

from 0 to 14 (inclusive) : 

14 

15 
Thread is assigned Preemption-Threshold = 

15 [this has the effect of disabling 

preemption for threads with priority values 

from 15 to 19 (inclusive)] 
: 

19 

20 

Thread is assigned Priority = 20 : 

31 
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thread of priority 19, 18, 17, 16, and so on. But, if its Preemption-Threshold were set to 15, for example, 

only threads higher in priority than 15 (lower in number; ie 14, 13, 12, …), could preempt the thread. So, 

threads in between - at priority 19, 18, 17, 16 and 15 - cannot preempt it, but threads at priority 14 and 

higher (lower numbers) can. Preemption- Threshold is optional, and can be specified for any thread, all 

threads, or no threads. If not specified for a thread, the thread can be preempted by any thread with a 

higher priority. But with Preemption-Threshold Scheduling, preemption of a thread can be prevented, up 

to some limit, above which preemption will be permitted. 

Performance Benefits 

To illustrate the performance benefits that can be achieved using Preemption-Threshold Scheduling, we 

will compare a fully-preemptive scheduling approach to one that uses Preemption-Threshold Scheduling, 

and we’ll measure the consequences of each with respect to context switching and throughput. For this 

investigation, we’ll use a simple producer-consumer application, with one thread (Thread_D) sending 3 

messages to each of 3 message queues, and 3 threads (Thread A, Thread B, and Thread C) each retrieving 

them from one of the queues. We’ll log all events so we can see what is going on. Then, we’ll view the 

logged events, count the context switches, measure the performance, and draw our conclusions. 

To compare approaches, we’ll consider 2 cases: 

1. Case-1 uses fully-preemptive scheduling, with Threads A, B, C, and D assigned priorities 1, 2, 3, 

and 4, respectively. 

2. In our second case, Case-2, we will use Preemption-Threshold Scheduling, to see how that can be 

used to reduce context switches. To do so, we assign Thread_D (our “Producer” thread) a 

preemption-threshold of 1, meaning that it can only be preempted by a thread with priority 

higher than 1. In this system, no thread has priority higher than 1 (=0), hence, Thread_D will not be 

preempted by thread A, B, or C 

In Case-1, Threads A, B, and C each attempt to read a message from a queue but all are blocked since no 

messages have yet been sent by Thread D. Accordingly, Threads A, B, and C are SUSPENDED, awaiting a 

message to appear in the queue from which they are attempting to read. This enables Thread_D to run. 

Thread_D begins to send its messages to each queue, but as soon as it sends the first message, Thread_A 

jumps in to retrieve it. Why? Because Thread_A is higher in priority than Thread D, and Thread_A now is 

READY to run, since the queue from which it was attempting to read now is non-empty. Once Thread_A 

reads its message, it again is SUSPENED because the queue is again empty. Thread_D is resumed, and 

Thread_D now sends a message to the queue being read by Thread_B, which makes Thread B READY. 

Thread B preempts Thread_D, and reads its message, and then is SUSPENDED as the queue becomes 

empty. Similarly for Thread C, and so on through all 9 messages. This completes a cycle. In this cycle, 9 

messages were sent, 9 retrieved, and 18 context switches were recorded. 

In Case-2, the code is the same, but Thread_D will not be interrupted while it sends its messages, because 

Thread D has a Preemption-Threshold of 1, and none of the other threads have the required priority of 0 

that would enable them to preempt Thread D. Thread_D will keep sending messages until it encounters a 

queue that is full, in which case it will be SUSPENDED until the queue becomes non-full. Note that once 
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Thread D is SUSPENDED, it will not resume until threads A, B, and C are blocked, since Thread D has 

priority=4, and thus cannot preempt any other thread. The result is significantly different from Case-1. 

While we still see 9 messages sent and 9 received, rather than seeing 18 context switches, we see only 4 
context switches. Comparing context switches, we see Case-1 with 18 and Case-2 with 4. See the event 
trace graphic below:  

 

By selecting a complete cycle, we can see the number of timer ticks in that cycle. 

Case-1 shows 7,531 ticks in a cycle 

 

 

  

Case-1 

No PTS 
Case-2 With PTS 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

 

 

1 
4 

Context Switches 
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Case-2 shows 4,420 ticks in a cycle 

 

 

Here is a summary of context switches and resulting throughput. 

 

Case Messages Context Switches 

Case-1: Fully Preemptive Scheduling 9 18 

Case-2: Preemption-Threshold Scheduling 9 4 

 

 
Measurement 

 
Case-1 (Fully 
Preemptive) 

Case-2 
(Preemption- 

Threshold) 

 
Ratio 

(Case 1 vs Case-2) 

Context Switches 18 4 450% 

Elapsed Time 7,531 ticks 4,420 ticks 170% 

Messages Sent 9 9 No Change 

Messages Received 9 9 No Change 

 

If this application were a message-sending system, we’d see a significant improvement in performance and 

throughput using Preemption-Threshold Scheduling, as compared with the fully-preemptive Case-1. 
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Summary 

We’ve seen how different types of RTOS schedulers work, and how a fully preemptive scheduler delivers 

maximum responsiveness. But a fully preemptive scheduler can introduce significant overhead that reduces 

system efficiency. In cases where system throughput is more critical than individual event responsiveness, 

Preemption-Threshold Scheduling can reduce context switches, and enable increased performance. 
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