
 

 

3 ways to mitigate 

risk when using 

private package 

feeds 

 

Secure Your Hybrid Software Supply Chain 
 

An always-up-to-date version of this whitepaper is located at: https://aka.ms/pkg-sec-wp

https://aka.ms/pkg-sec-wp


   
 

1  3 Ways to Mitigate Risk Using Private Package Feeds 

  

Contents 
 
Introduction ............................................................................................................................... 1 

When private packages are not private enough ........................................................................ 2 

What are the risks of a hybrid configuration? ........................................................................... 4 

Mitigation strategies .................................................................................................................. 5 

Tool comparison ...................................................................................................................... 10 

Mitigate using Azure Artifacts ................................................................................................. 11 

Summary .................................................................................................................................. 12 



   
 

1  3 Ways to Mitigate Risk Using Private Package Feeds 

  

Introduction 
 

Software today has become an assembly of 

components from a wide range of sources. Individual 

packages may be developed in-house, acquired from 

third-parties, or downloaded from free and public 

sources. The security risks of these sources are 

straightforward to understand in isolation. But, when 

used in concert, new interactions arise that can 

compromise even a conscientious organization. 

Many organizations use public package feeds — such 

as Maven Central, npm, NuGet Gallery, and the 

Python Package Index (PyPI) — to take advantage of 

the open ecosystems they offer. As a result, 

organizations fail to treat these uncurated feeds as a 

potential source of malware. The truth is that projects 

that consume packages from multiple public and 

private feeds may be exposed to supply chain 

vulnerabilities unique to these hybrid configurations. 

 

 

  



   
 

2  3 Ways to Mitigate Risk Using Private Package Feeds 

  

When private packages are not 

private enough 
 
Over the last decade, there has been a dramatic increase in the scope, quality, and 

availability of free, open-source software. Even closed-source applications commonly 

depend on freely shared libraries, tools, and operating systems. A critical factor in this 

has been the development of ecosystems around package indexes that allow anyone 

to publish, such as Maven Central, npm, NuGet Gallery, and Python Package Index. 

  

A public, open-package index allows anyone to share their code without proving their 

identity. This ease of publishing has resulted in large, active ecosystems of packages. 

These ecosystems can include various elements, from generic building blocks to 

niche, domain-specific algorithms, along with powerful tools for discovering, 

acquiring, and composing these packages. 

 

Organizations (or “clients”) use private feeds as package index mirrors or to distribute 

internal packages to protect against upstream compromises, such as package 

hijacking and typo-squatting. Package management tools typically allow specifying 

multiple sources from which to download components, making it easy to consume 

from public and private indexes. 

 

This hybrid configuration can enable new ways for attackers to enter your systems 

through otherwise secure infrastructure due to how package management tools 

resolve names across multiple sources.  

 

In past whitepapers, such as the Microsoft Digital Defense Report, we discussed some 

potential attacks through open-package indexes that are often mitigated using 

private feeds. This paper will cover the unique risks of hybrid configurations — 

particularly those using both public and private feeds — and review available 

mitigations for developers using .NET, Python, JavaScript, and Java. 

 

  

https://aka.ms/AAb1yk3


   
 

3  3 Ways to Mitigate Risk Using Private Package Feeds 

  

“Open-source projects have an average of 180 

package dependencies.”  

—GitHub State of the Octoverse Report, 2019 

 

“The pervasiveness has attracted the attention of 

attackers, who in recent years have increasingly 

turned their focus to the open-source software 

supply chain.”  

—Microsoft Digital Defense Report, September 2020 

 

 

https://aka.ms/AAb1qls
https://aka.ms/AAb1yk3


   
 

4  3 Ways to Mitigate Risk Using Private Package Feeds 

  

What are the risks of a hybrid 

configuration? 
 
One common hybrid configuration that clients use is storing internal packages on a private feed but 

allowing the retrieval of dependencies from a public feed. This ensures that the latest package releases 

are automatically adopted when referenced from a package that does not need to be updated. Internal 

developers publish their packages to this private feed, and consumers check both private and public feeds 

for the best available versions of the required packages. This configuration presents a supply chain risk: 

the substitution attack.  

 

Most clients will automatically install the attacker’s package 

from the public feed, which presents an attack opportunity. 
 

A substitution attack happens when an attacker discovers that a client is using a private package that’s not 

present on the public feed. After the attacker uploads a higher version of the private package to the feed, 

the client downloads it automatically because it has the same file name. Services that merge package 

feeds also allow this substitution if packages from public sources may override those from private sources. 

A related risk with a similar impact can emerge if the package publisher’s credentials have been 

compromised. 

 

What does an attempted attack look like? 
At its simplest, an attack involves someone installing a package that is different from what the client 

expected. This is most concerning in automated builds where the installation messages are often not 

reviewed on success. Most substitution attacks will successfully install and fail later in the build unless the 

attacker has cloned the package’s functionality. 

 

Unexplained build or test failures should be treated as a potential warning of a package substitution 

attack. Some public package feeds allow publishers to remove or delist packages, which could cause 

failing builds to start succeeding again, making it difficult to detect. 

 

Importantly, even though the build failed, the attacker likely achieved remote code execution. Any secrets 

or access tokens may have been exfiltrated or misused. Reducing the use of secrets in automated builds 

can help reduce the impact, for example, by separating build and publish steps. Using hosted build VMs 

rather than on-premises machines further can limit the exposure. 



   
 

5  3 Ways to Mitigate Risk Using Private Package Feeds 

  

Even though your build failed, the attacker still achieved remote 

code execution. 

 
When all package installs are proxied through an internal feed, even if the malicious package is removed 

from upstream, it will remain cached, making it easier to detect and analyze. Internal feeds that remember 

each package version’s original source will likely show one or more private versions of the package, with 

the most recent version(s) being cached from a public source. 

 

In the following pages, we review the available mitigations for these risks. Each approach can mitigate the 

issue independently, although the varying impact on development teams may make one preferable over 

the alternatives.

Mitigation strategies 
 

1. Reference one private feed, not multiple 
Most package manager clients will query all package feeds listed in the local 

configuration without regard for order or priorities. npm is a notable exception as it 

requires controlled scopes, which we discuss in the second mitigation strategy. 

 

For package managers who do not prioritize feeds, we recommend configuring the 

client to reference a single private feed. This may require pushing public packages to 

your private feed manually or configuring the private feed to pull them automatically. 

 
Protect against broken updates and targeted attacks 

Configuring the package manager to use only a single source isolates you from 

unexpected public feed changes. This includes broken updates and removals as well as 

targeted substitution attacks. Azure Artifacts offers upstream sources to combine 

multiple feeds with suitable prioritization. If you cannot combine feeds into a single 

source, you will need to ensure that each package name referenced is controlled by 

trustworthy publishers across every feed. 

  

https://aka.ms/AAb1ykb


   
 

6  3 Ways to Mitigate Risk Using Private Package Feeds 

  

 

Using a single feed is strongly recommended for the Python Package Index, NuGet 

Gallery, and Maven. To ensure your projects are following this recommendation:  

 

For Python: Use the index-url option in pip’s configuration file or command line to 

specify the feed, overriding the default. Avoid the extra-index-url option, which is 

additive and may lead to having multiple indexes. 

 

For NuGet Gallery: Ensure your nuget.config packageSources section starts with a <clear 

/> entry to remove any inherited configuration, and use a single <add /> entry for your 

private feed. 

 

For Maven: Configure a single mirror that is <mirrorOf>*</mirrorOf> to direct all 

requests through a single repository that performs its own redirection. The default public 

repository may instead be disabled by setting the enabled property to false for both 

“releases” and “snapshots” on the “central” repository, although this will not prevent 

substitutions among other feeds. 

 

For Gradle: There are no default repositories, making it easy to only specify your private 

feed. 

 

Even with this configuration, if your feed allows public packages to override private 

packages, a substitution attack may still be possible. You should either ensure your feed 

is configured to disallow this, claim your private packages' names on the public index, or 

use another mitigation.

https://aka.ms/AAb1qmw
https://aka.ms/AAb1qn0
https://aka.ms/AAb1yl5
https://aka.ms/AAb1qnc
https://aka.ms/AAb1qnc


   
 

7  3 Ways to Mitigate Risk Using Private Package Feeds 

  

2. Protect your packages using controlled scopes  
Some package managers support controlled scopes, namespaces, or prefixes. The 

details vary by ecosystem, but the purpose is to protect a range of package names. 

These can be used with packages that you control to protect against an attacker 

publicly claiming a name that you use privately, or to provide confidence that your 

own team released public packages. 

 

Here is our recommendation for using controlled scopes as your mitigation strategy: 

 

For npm: Using a scope prefix in combination with registry configuration allows you 

to specify the source for each package. Because only a single registry will be 

searched, this protects against substitution attacks through the public registry. These 

options can be configured for each project or an entire machine using an npmrc file. 

Similar options exist for Yarn through the .yarnrc.yml file. 

 

For NuGet Gallery: An ID prefix can be registered by publishers to restrict uploads to 

the public gallery. Packages under a registered prefix can only be uploaded by 

approved accounts, which also protects against public substitution attacks. This 

reservation can be done whether you intend to publish your packages to NuGet.org 

or not. Using a registered ID prefix for private packages helps ensure that an attacker 

cannot claim any of your names. 

 

For Maven: Public packages on Maven Central can only be published to a namespace 

controlled by the uploader, verified using DNS. Private packages that are named 

based on a domain name under your own control will be protected against public 

substitution attacks on Maven Central. 

 

Note that these approaches may require changing the names of packages and 

updating any code that uses them. 

 

 

 

  

https://aka.ms/AAb1ylb
https://aka.ms/AAb1qnj
https://aka.ms/AAb1qnn
https://aka.ms/AAb1ylm


   
 

8  3 Ways to Mitigate Risk Using Private Package Feeds 

  

3. Utilize client-side verification features 
Beyond the protection offered by carefully managing sources, package managers 

provide additional client-side verification features to protect against supply chain 

attacks. These include options such as version pinning and integrity verification. 

 

Version pinning is recommended as the baseline mitigation and is supported by most 

clients. Specifying precise versions for packages and transitive dependencies, rather 

than an open range (“3.5.4” rather than “>=3.5” or “3.5.*”), will mitigate forced 

upgrade or downgrade attacks. However, they will not prevent a compromised index 

from serving an alternate package and claiming it to be the same version. 

 

Specify precise versions for packages and 

dependencies to mitigate forced upgrade or 

downgrade attacks. 
 

Integrity verification: While most indexes use HTTPS and their own integrity 

mechanisms, you can add additional protection against package substitution attacks 

with local integrity verification. Integrity verification ensures that a downloaded 

package is identical to the first time it was downloaded and will abort if any 

inconsistencies are detected.  

 

Here’s how to mitigate risk using these features:  

 

For npm: Installing from a package.json file automatically updates the package-

lock.json file with versions and file hashes of packages. When package-lock.json is 

included with your project, running the “npm ci” command will replicate the install 

using version pinning and integrity checking. This means you do not need to pin 

versions manually in package.json. 

 

For NuGet Gallery: A packages.lock.json file can be enabled for your project, which 

will be automatically created on “nuget restore.” When the file exists and is included 

with your project, it will be used by “nuget restore --locked-mode” to validate that 

the packages have not changed using version pinning and integrity checking. 

  

https://aka.ms/AAbhh6e
https://aka.ms/AAbhh6e
https://aka.ms/AAb2e0u


   
 

9  3 Ways to Mitigate Risk Using Private Package Feeds 

  

 

For Python: Pip’s hash-checking mode ensures that the downloaded file matches a 

known SHA256 hash stored in your project. Any attempted package substitution 

attack must compromise both server and client. Generating the hashes currently 

requires an additional tool such as pip-compile. 

 

For Maven: Dependencies are checked for modifications since the original upload 

cannot be automatically verified against prior installs. Plugins are available to check 

publisher PGP signatures, which will be present on public packages. But, to detect an 

attack, your private packages will require trustworthy signatures. 

 

For Gradle: Gradle dependency verification for packages downloaded from Maven 

Central can be enabled by following this documentation.  

  

https://aka.ms/AAb1qo5
https://aka.ms/AAb1qo9
https://aka.ms/AAb1ym7


   
 

10  3 Ways to Mitigate Risk Using Private Package Feeds 

  

 

Tool comparison 
Here is an overview of our recommendations for each of the following public package 

feeds: 

 

 
How to handle 

multiple indexes 

Our recommended 

configuration 
Best practice 

Gradle 

 

 

Gradle only uses 

explicitly listed 

repositories but will 

select any with the 

best available version. 

 

Specify a single private 

Maven repository and 

enable upstreams on the 

private repository. 

Enable checksum 

verification and signature 

verification in 

your Gradle configuration. 

Maven  

Multiple repository 

URLs can be specified 

in user or project 

profiles. These are 

queried in order, 

though the order is not 

obvious from any one 

configuration file. See 

Repository Order in 

the Apache Maven 

documentation. 

Specify a single mirror for 

all repositories, to ensure 

your private repository 

takes priority. Enable 

upstreams on the private 

repository. Ensure 

developers update their 

settings.xml correctly. 

Optionally block network 

access to Maven Central 

servers directly. 

Configure plugins to 

validate during build time 

the checksums and PGP 

signatures of the 

dependencies. 

 

Consider using  

checksum-maven-plugin 

or  

pgpverify-maven-plugin. 

Note that these will not 

prevent upgrade attacks if 

the publisher’s credentials 

have been compromised, 

as there are no locally 

stored checksums.  

https://aka.ms/AAbhh6z
https://aka.ms/AAbhh5s
https://aka.ms/AAbhh5s
https://aka.ms/AAbhh7y


   
 

11  3 Ways to Mitigate Risk Using Private Package Feeds 

  

npm 

Registries are linked to 

a package name scope, 

making npm safe for 

properly scoped 

packages.  

Either use scopes for all 

private packages or 

override the default 

registry with your private 

registry and enable 

upstreams. 

Also include package-

lock.json with your 

sources and use “npm ci” 

to install matching 

packages without 

performing any upgrades. 

NuGet 

Gallery 

Multiple package 

sources specified by 

user or project. Latest 

version from any 

source will be installed. 

Clear all packageSource 

settings in project 

configuration or 

nuget.config, add only 

your private gallery, and 

enable upstreams. 

Prefer the “nuget restore -

-locked-mode” command 

and include a generated 

packages.lock.json with 

your project. 

Pip 

One default package 

index and multiple 

extra index URLs. 

Latest version from any 

index will be installed. 

Use pip’s index-url setting 

to specify your private 

index and enable 

upstreams. Avoid extra-

index-url. 

Use “pip-compile” to 

generate locked file with 

hashes and enable hash-

checking mode when 

installing. 

Yarn 

Registries are linked to 

a package name scope, 

making Yarn safe for 

properly scoped 

packages. 

Either use scopes for all 

private packages or 

override the default 

registry with your private 

registry and enable 

upstreams. 

Also include yarn.lock with 

your sources and use 

“yarn install –immutable --

immutable-cache --check-

cache” to ensure matching 

packages are present. 

 

Mitigate using Azure Artifacts 
 
Azure Artifacts is part of the Azure DevOps suite, available in the online service and 

the on-premises Azure DevOps Server. It is a fully integrated package management 

system with interfaces for the tools used in .NET, Python, Node.js, and Java 

ecosystems. 

 

Azure Artifacts provides upstream sources to automatically merge packages from 

public feeds into your private feed for all ecosystems. Configuring upstream sources 

is the recommended way to enable the single source mitigation described earlier in 

this whitepaper.  

 

https://aka.ms/AAb1yma
https://aka.ms/AAb1qog


   
 

12  3 Ways to Mitigate Risk Using Private Package Feeds 

  

Since February 2021, the hosted Azure Artifacts service has enabled additional 

protections to prevent public packages from unexpectedly replacing or merging with 

private packages. This mitigates substitution attacks when using a single Azure 

Artifacts feed that upstreams to other feeds, including public feeds. For on-premises 

deployments, consult the Azure DevOps Feature Timeline. 

 

To mitigate a substitution attack, Azure Artifacts 

automatically prevents public versions from 

replacing or merging with private packages. 

 

 

Summary 

While essential to modern development, public package feeds add risk to your 

supply-chain security that can be mitigated by using private feeds. However, 

improper configuration can expose your automated builds to unexpected 

substitution attacks, leading to remote code execution and compromise.  

 

Ensure all your private packages are unavailable on the public feeds or accessed 

through a single feed that safely merges public and private views. Package manager 

configurations should avoid listing multiple feeds, as most tools do not prevent 

external sources from overriding internal ones. Where possible, enabling hash, 

checksum, or signature verification further protects against substitution attacks. 

For more information, here are some resources that can help you get started: 

 

Azure Artifacts guidance on upstream sources 

NuGet guidance on signature verification 

Gradle guidance on dependency verification 

Pip guidance on hash verification 

Npm ci command 

 
 

 

https://aka.ms/AAb1qoh
https://aka.ms/AAb1ymh
https://aka.ms/AAb1qol
https://aka.ms/AAb1qoo
https://aka.ms/AAb1ymv
https://aka.ms/AAb1yn0


   
 

13  3 Ways to Mitigate Risk Using Private Package Feeds 

  

 

© 2021 Microsoft Corporation.  All rights reserved.  This document is provided "as-is." Information and views 

expressed in this document, including URL and other Internet Web site references, may change without notice. You 

bear the risk of using it. 
  
This document does not provide you with any legal rights to any intellectual property in any Microsoft product. You 

may copy and use this document for your internal, reference purposes. 

 

Version: 1.1 

Publish Date: March 22, 2021 

 

Version Publish Date Description 

1.1 March 29, 2021 Clarify guidance for Maven users 

1.0 February 9, 2021 Initial publish 

 


