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ABSTRACT 
SQL Ledger is a new technology that allows cryptographically 
verifying the integrity of relational data stored in Azure SQL 
Database and SQL Server. This is achieved by maintaining all 
historical data in the database and persisting its cryptographic 
(SHA-256) digests in an immutable, tamper-evident ledger. 
Digests representing the overall state of the ledger can then be 
extracted and stored outside of the RDBMS to protect the data 
from any attacker or high privileged user, including DBAs, system 
and cloud administrators. The ledger and the historical data are 
managed transparently, offering protection without any 
application changes. Historical data is maintained in a relational 
form to support SQL queries for auditing, forensics and other 
purposes. SQL Ledger provides cryptographic data integrity 
guarantees while maintaining the power, flexibility and 
performance of a commercial RDBMS. In contrast to Blockchain 
solutions that aim for full integrity, SQL Ledger offers a form of 
integrity protection known as Forward Integrity. The proposed 
technology is significantly cheaper and more secure than 
traditional solutions that establish trust based on audits or 
mediators, but also has substantial advantages over Blockchain 
solutions that are complex to deploy, lack data management 
capabilities and suffer in terms of performance due to their 
decentralized nature.  

CCS CONCEPTS 
• Information systems → DBMS engine architectures; • Se-
curity and privacy → Database and storage security; 
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1 INTRODUCTION 
Establishing trust around the integrity of data stored in database 
systems has been a long-standing problem for all organizations 
that manage financial, medical or other sensitive data. Systems 
that maintain such data are also known as Systems of Record 
(SOR) and need to guarantee the fidelity of their data for legal and 
compliance reasons. This is extremely challenging since attackers 
or high privileged users, such as DBAs or system administrators 
who have full control of the system, can easily tamper with the 
data and erase any traces of their actions. Additionally, as more 
organizations move their data into the cloud, the cloud provider 
and any operators also need to be trusted to maintain the integrity 
of the data they manage, significantly expanding the trust 
boundary. 
Traditionally, organizations have depended on complicated, time-
consuming monitoring and auditing solutions to detect 
unauthorized operations and certify that their systems meet the 
expected security standards. Alternatively, they might involve 
trusted intermediaries to host their sensitive data who in turn 
have gone through similar processes to establish trust. These 
solutions are expensive but also incomplete, as audits cannot fully 
model a system and discover all its vulnerabilities.  
Blockchain systems, which were originally established by Bitcoin 
[24], introduce a revolutionary technology for guaranteeing the 
integrity of data and business logic in an untrusted environment. 
They form a network of participants who execute transactions 
using a decentralized, Byzantine fault-tolerant [14] consensus 
protocol and validate the correct execution of every transaction. 
The data is stored in various forms of tamper-evident data 
structures, such as Blockchains (linked lists of hashed blocks) or 
Merkle Trees [18], to allow each participant to efficiently verify 
that their state is consistent with the other participants. The 
Blockchain technology is designed for environments where there 
is no or very limited trust and only a majority of participants can 
be trusted. However, due to its decentralized nature, it presents 
significant challenges when used for real-world, production 
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workloads. Even state of the art Blockchain systems, such as 
Hyperledger Fabric [1], lack the advanced data management 
capabilities of an RDBMS, use custom programming languages 
that do not integrate with the existing tooling and reporting 
ecosystem and, more importantly, provide more than an order of 
magnitude lower throughput and higher latency than a 
commercial RDBMS. 
While there are scenarios that merit the strong security 
guarantees that the Blockchain technology offers, there are many 
scenarios, especially around SORs, where using a Blockchain 
solution is an overkill and does not justify the cost and 
performance overhead. SQL Ledger is a new technology that 
addresses the latter scenarios by offering a different point in the 
security-cost/performance spectrum. It maintains the power, 
flexibility and performance of a commercial RDBMS and can be 
centrally managed, like a traditional RDBMS. However, it still 
offers strong security guarantees that are based on the notion of 
Forward Integrity [7]. Briefly, Forward Integrity assumes that the 
RDBMS is trusted until the time a transaction is processed and 
only offers protection against future attacks. We believe that 
Forward Integrity is sufficient for a wide class of real-world 
applications where the organization hosting the data is generally 
trusted but must be able to attest to the authenticity of the data 
and prove that it has not been tampered with. SQL Ledger 
achieves that by leveraging the core data structures from the 
Blockchain technology to capture the state of the database in 
compact, cryptographic digests. These digests can be stored 
outside of the database or shared with any parties that need to 
validate the integrity of the data and used at a later point in time 
to verify that the data has not been tampered with. 
This paper describes the overall design of SQL Ledger and is 
organized as follows: Section 2 outlines the architecture of our 
system and the functionality exposed. Section 3 covers the 
detailed design of the various components. Section 4 presents our 
experimental results regarding the performance of the system. 
Finally, Section 5 discusses our ongoing work to extend the 
functionality of the system.  

2 OVERVIEW 
This section provides an overview of SQL Ledger and describes 
the main components of the system, as demonstrated in Figure 1. 
We also discuss the threat model and integrity guarantees of our 
technology. 

2.1 Ledger Tables 
SQL Ledger introduces a new type of tables, called Ledger tables, 
that is designed to protect the integrity of the underlying data 
without requiring any application changes. Ledger tables are 
relational tables that can use all SQL features that are available for 
regular tables. In addition, they allow users to detect malicious 
data modifications and cryptographically verify the data integrity: 

• All historical data of Ledger tables is transparently 
maintained in the system and exposed to users for 
auditing and forensic purposes. Malicious users can 
update the content of Ledger tables, using regular DML 

operations, and tamper with the data. The historical 
data can be used to analyze the operations executed on 
and detect unexpected or malicious modifications. 

• All latest and historical data of Ledger tables is 
cryptographically hashed, using the SHA-256 
algorithm. This allows the system to capture the state of 
the data in a compact digest and use that to 
cryptographically verify its integrity later. 
Cryptographic verifiability protects data against 
sophisticated attacks where the adversary manages to 
bypass the earlier logic that audits modifications and 
preserves historical data. For example, by compromising 
the RDBMS process or overwriting the data directly at 
the storage layer. 

There are two types of Ledger tables: append-only and updateable. 
Append-only tables only support insertions and are designed for 
auditing scenarios where updates and deletions are not allowed. 
Updateable tables allow all operations and can be used as regular 
tables by any SQL application. In the case of updateable tables, all 
earlier versions of a row are preserved in a secondary table, 
known as the History table, that mirrors the schema of the Ledger 
table. When a row is updated, the latest version of the row 
remains in the Ledger table, while its earlier version is inserted 
into the History table by the system, transparently to the 
application. 

 

Figure 1. SQL Ledger architecture 

For every Ledger table, the system automatically generates a view, 
called Ledger view, that reports all row modifications that have 
occurred on this table by leveraging the historical data in the 
History table. This enables users, their partners and auditors to 
analyze all historical operations and detect potential tampering. 
Each row operation is accompanied by the ID of the transaction 
that performed it, allowing users to retrieve more information 
about the time the transaction was executed, the identity of the 
user who executed it and correlate it to other operations 
performed by this transaction. Figure 2 provides an example of an 
updateable Ledger table with the corresponding History table and 
Ledger view. 
Finally, all latest and historical row versions are cryptographically 
hashed, as they get updated, to capture the state of the Ledger 



 

table. The corresponding digests are persisted in a tamper-
evident, append-only data structure that is described in the next 
section. 

Ledger table

Name Balance

Nick $50

Joe $30

History table

Name            Balance Operation Transaction ID

Nick $50 INSERT 10

John $500 INSERT 13

Joe $30 INSERT 16

Mary $200 INSERT 17

Nick $50 DELETE 20

Nick $100 INSERT 20

Joe $30 DELETE 23

Ledger view
Name Balance

Nick $100

John $500

Mary $200

 

Figure 2. Sample updateable Ledger table, History table 
and Ledger view for a table storing account balances. 

2.2 Database Ledger 
A naïve approach for protecting the integrity of a Ledger table 
would be to periodically compute the SHA-256 hash of all its rows, 
including the rows of the corresponding History table to also 
protect any historical data. The generated digest would then be 
used at a later point to verify the integrity of the data by restoring 
the tables back to the time the digest was generated, recomputing 
the hash over their rows and, finally, verifying that the new hash 
matches the original digest. This might be practical for small 
tables but, when it comes to production workloads, with TBs of 
data that is continuously updated, the cost of computing the hash 
across the whole dataset frequently enough to provide actual 
protection is prohibitive.  
To address this challenge, we leverage ideas from the Blockchain 
community and incrementally maintain the hashes of all Ledger 
tables in a Blockchain data structure, called Database Ledger. 
Since transactions are the unit of atomicity for any RDBMS, this 
is the unit of work being captured in the Database Ledger. 
Specifically, when a transaction commits, the SHA-256 hash of 
any Ledger table rows that were modified by this transaction, 
together with some metadata for the transaction, such as the 
identity of the user that executed it and its commit timestamp, are 
appended as a “transaction entry” in the Database Ledger. When 
several transactions get appended, we form a block that contains 
the entries of all transactions in this block, but also the hash of the 
previous block, forming a Blockchain. Using this technique, we 
only need to incrementally compute the hashes of rows being 
modified and not the overall dataset. The trade-off compared to 
the naïve approach is that our ledger needs to maintain 
information for all historical data and transactions; however, since 
our system maintains historical data to allow users to detect 
malicious modifications on Ledger tables, this is anyways 
necessary. Figure 3 presents the Database Ledger structure. 
The hash of the latest block in the Database Ledger is known as 
the Database Digest and represents the state of all Ledger tables 
in the database at the time when this block was generated. 
Generating a Database Digest is extremely efficient since it only 
involves computing the hashes of the blocks that were recently 
appended. This allows users to extract a digest of the database 

state very frequently, even every second, and use it later for 
verifying the data integrity. SQL Ledger exposes an API for users 
to generate a Database Digest in the form of a JSON document 
that contains the hash of the latest block together with metadata 
regarding the block ID, the time the digest was generated and the 
commit timestamp of the last transaction in this block. 

Ledger table

Name Balance

Nick $50

History table

Name Balance

Nick $100

John $500

Mary $200

Database Ledger

Initial block
(No previous 

block #)

Trans Info 1
 

Trans Info N

Block 0 Block 1 Block N

Transaction Info:
• Transaction Id
• User identity
• Commit  Timestamp
• # of updated rows

Aggregated hash for all rows 
updated by Transaction X

# of Block 0

Trans Info 1
 

Trans Info N

# of Block N-1

 

Figure 3. The Database Ledger. 

2.3 Ledger Verification 
Although our system does not allow users to modify the content 
of the ledger, an attacker or system administrator who has control 
of the machine can bypass all system checks and directly tamper 
with the data, for example by editing the database files in storage. 
SQL Ledger cannot prevent such attacks but guarantees that any 
tampering will be detected when the ledger data is verified. The 
Ledger Verification process takes as input one or more previously 
generated Database Digests and recomputes all the hashes stored 
in the Database Ledger based on the current state of Ledger tables. 
If the computed hashes do not match the input digests, the 
verification fails, indicating that the data has been tampered with, 
and reports all inconsistencies detected.  
The verification process scans all Ledger and History tables and 
recomputes the SHA-256 hashes for their rows to verify the 
digests stored in the Database Ledger. It is, therefore, a resource 
intensive process that is expected to be executed only when users 
need to verify the integrity of their database. It can be executed 
hourly or daily, for cases where the integrity of the database needs 
to be continuously monitored, or only when the organization 
hosting the data goes through an audit and needs to provide 
cryptographic evidence regarding the authenticity of their data. 
To reduce the cost of verification, our system exposes options to 
verify individual Ledger tables or only a subset of the ledger.  

2.4 Digest Management 
The verification process and, therefore, the integrity of the 
database depends on the integrity of the input digests. For this 
purpose, Database Digests that are extracted from the database 
need to be stored in a trusted location that cannot be tampered 
with by the high privileged users or attackers of the RDBMS. SQL 
Ledger integrates with Azure Immutable Blob Storage [19] to 
periodically (every few seconds) upload Database Digests in 
immutable, append-only BLOBs that do not allow future 
modifications by any users or even Microsoft engineers. This 



 

provides a simple and cost-effective way for users to automate 
digest management without having to worry about their 
availability and geographic replication. Additionally, our system 
allows users to generate a Database Digest on demand so that they 
can manually store it in any service or device that they consider 
trusted. Using this mechanism, users with stricter security 
requirements can store digests outside of the Microsoft cloud, 
removing Microsoft from the trust boundary. For example, 
Database Digests can be stored in an on-premise WORM device, 
uploaded to a Public Blockchain, such as Bitcoin or Ethereum [11], 
or even signed with the company’s private/public key pair, to 
guarantee their authenticity, and shared with any customers, 
partners or auditors who can later use them to verify the 
corresponding data. 

2.5 Integrity Guarantees and Threat Model 

2.5.1 Integrity Guarantees 
As discussed in Section 1, SQL Ledger offers a less well-known 
notion of integrity called Forward Integrity. The idea is that the 
system is trusted until the time when a transaction is processed, 
and data integrity is protected against future compromises of the 
system.  
Let us use a real-world scenario to explain how Forward Integrity, 
although weaker than full integrity, can address a wide range of 
scenarios: Contoso is a car manufacturer that uses a database to 
track the parts manufactured and their lifecycle. Bob bought a car 
made by Contoso in 2018. In 2020, Bob has a collision and he soon 
finds out that Contoso had issued a recall for certain batches of 
brake parts that they manufactured. He, then, files a lawsuit 
against Contoso claiming that defective parts were used on his car 
and are responsible for the collision, but he was never notified as 
part of the recall process. Contoso now needs to prove that the 
parts used on Bob’s car were not part of the defective batches that 
were recalled. Unless Contoso is using a technology to protect 
data integrity, one of their DBAs or system administrators can 
easily tamper with the part related data and provide false 
information, therefore making such evidence unreliable. In this 
scenario, Contoso is generally an honest company that tracks 
their parts lifecycle correctly since they do not have any motive 
to do otherwise. Therefore, all parts used in Bob’s car are 
originally tracked correctly in their database. When the defective 
parts are identified later or, more importantly, when the lawsuit 
happens, Contoso or some of their employees might be motivated 
to tamper with the data to their advantage. Forward Integrity 
protects against such attacks where an adversary (internal or 
external) attempts to tamper with the data after it has been 
originally written in the system. This is a very common pattern in 
real-world scenarios as enterprises generally act honestly until a 
specific event might put their finances or reputation at risk, 
motivating them to act maliciously. 
SQL Ledger guarantees Forward Integrity by leveraging 
cryptographically tamper-evident data structures under the 
following assumptions: 

1) The user operation that originally updated the data in 
the Ledger table was processed correctly and remained 

valid until a Database Digest was generated (which 
occurs within a few seconds). This assumption is 
aligned with the definition of Forward Integrity which 
intends to protect data from future tampering. 

2) The Database Digests used for verification are stored in 
a separate, trusted location that cannot be tampered 
with by the adversary.  

3) The ledger verification process can be executed in a 
trusted environment. This can be achieved in the 
original environment itself if the users trust it, or by 
restoring the database in a different trusted 
environment. 

2.5.2 Threat Model 
We aim to protect data integrity against strong adversaries who 
have total control of the database, the operating system (OS) and 
the machine where the RDBMS is running. A strong adversary has 
full power over the system and can mount any attack, such as a) 
modify the data stored in the database using the supported 
database APIs, b) modify the data bypassing the database layer 
and directly updating it in storage or c) manipulate the execution 
of the RDBMS and the OS (for example by attaching a debugger) 
for their advantage.  

3 DETAILED DESIGN 
In this section, we describe the detailed design of the various 
components of SQL Ledger and how they interact with each other. 
We focus on updateable Ledger tables since they represent the 
more generic case, supporting all DML operations. 

 3.1 Ledger Table Schema Extensions 
The schema of Ledger and History tables is automatically 
extended to include four additional columns that are internally 
populated by the system and track:  

• The ID of the transaction that generated the row 
version. 

• The sequence number of the operation that generated 
the row version. 

• The ID of the transaction that deleted the row version. 
• The sequence number of the operation that deleted the 

row version. 
These columns are hidden from the users to guarantee 
transparency for the application using the table but are still 
exposed through the Ledger view. The transaction information is 
used to correlate the row versions modified by a transaction to the 
corresponding transaction entry in the Database Ledger. This 
allows users to retrieve metadata regarding the transactions that 
performed these operations but, more importantly, it is used by 
the verification process to identify all modifications performed by 
each transaction. The operation sequence numbers store the order 
within a transaction in which the row versions were updated. This 
is necessary because the row versions are hashed in the order in 
which they are updated and the verification process must use the 
same order when re-computing the hash for verification purposes.  



 

3.2  DML Operations and Row Hashing 
Any operations that update a Ledger table need to perform some 
additional tasks to maintain the historical data and compute the 
digests captured in the Database Ledger. Specifically, for every 
row updated, we must: 

• Persist the earlier version of the row in the history table. 
• Assign the transaction ID and generate a new sequence 

number, persisting them in the appropriate system 
columns. 

• Serialize the row content and include it when 
computing the hash for all rows updated by this 
transaction.  

SQL Ledger achieves that by extending the DML query plans of 
all insert, update and delete operations targeting Ledger tables. As 
part of inserting or updating a row, the transaction ID and newly 
generated sequence number are set for the new version of the row. 
Then, the query plan operator executes a special expression that 
serializes the row content and computes its hash, appending it to 
a Merkle Tree that is stored at the transaction level and contains 
the hashes of all row versions updated by this transaction for this 
Ledger table. The root of the tree represents all the updates 
performed by this transaction in this Ledger table. If the 
transaction updates multiple tables, a separate Merkle Tree is 
maintained for each table. 
If the operation also deletes a row version, by doing a delete or 
update, the deleted row version is propagated to an additional 
operator that also assigns the transaction ID and new sequence 
number for the deleted version and inserts it into the 
corresponding History table. The deleted row version is also 
hashed and appended to the same Merkle Tree. When the 
transaction commits, it will compute the root for each Merkle Tree 
and store it as part of the transaction entry that is recorded in the 
Database Ledger in tuples of the form (ledger_table_id, 
merkle_root_hash). 

Row 1 Row 2 Row 3 Row 4 Row N-1 Row N

H1 H2 H3 H4 H(N-1) HN

H12 H34 H(N-1)N

H1234

...

...

HRoot

# of 
columns

1st column 
ordinal

1st column 
type & length

1st column 
value

... Nth column 
ordinal

Nth column 
type & length

Nth column 
value  

Figure 4. Sample Merkle Tree of updated rows. 

Figure 4 shows an example of a Merkle Tree storing the updated 
row versions of a ledger table and the format used to serialize the 
rows. Other than the serialized value of each column, we include 
metadata regarding the number of columns in the row, the ordinal 
of individual columns, the data types, lengths and other 
information that affects how the values are interpreted. This is 

important because an attacker can tamper with the metadata of a 
Ledger table and cause the data to be interpreted incorrectly 
without ever tampering with the data itself. To better understand 
this, let us take a simple example of a table with two columns: 
“Column1” of type INT (4 bytes) and “Column2” of type 
SMALLINT (2 bytes). Now, let us assume that we have a row 
where Column1 = 0x12 and Column2 = 0x34. If our format only 
serialized the column values, the serialized form of this row would 
be: 0x000000120034. If the attacker tampers with the metadata and 
declares Columns1 as SMALLINT and Column2 as INT, the overall 
serialized value would not change but the data would now be 
interpreted as Column1 = 0 and Column2 = 0x120034, leading to 
incorrect results when querying the Ledger table. By including the 
metadata of the columns, we guarantee that the verification 
process will also detect attacks that affect the data interpretation. 

3.2.1 Merkle Tree Algorithm  
By appending the updated row versions in a Merkle Tree, we can 
represent all the versions updated by a transaction with the root 
of the Merkle Tree. This is very efficient since it reduces a 
potentially huge volume of data down to a single SHA-256 hash 
that can be stored in the transaction metadata. The challenge, 
however, is that the number of versions updated can be very large 
and is not known upfront. Additionally, it would be inefficient to 
re-process them after the operation has completed. For that 
purpose, we developed a streaming algorithm that computes the 
root of a Merkle Tree while the row versions get updated. Our 
algorithm works as follows: 
Let NL,i be the ith node of level L. For each level L, we store the last 
node that was appended to this level: NL,i, where i is the last node 
of the level. When a new node Nl,i+1 is appended to the level: 

• If i+1 is odd, we simply store this node as the last node 
of this level. 

• If i+1 is even, we compute the hash of the new node 
(NL,i+1), combined with the previous node we have 
stored for the level (NL,i), per the Merkle Tree definition, 
and append the resulting hash as a new node for the 
parent level (L+1). 

This process is executed recursively as long as a new node needs 
to be appended to the parent level. When all leaf nodes have been 
appended to the Merkle Tree, if the last node does not have a 
sibling, we promote the node itself as its parent. This is also 
executed recursively until we reach the root of the tree.  
The time complexity of this algorithm is O(N) and the space 
complexity O(logN), where N is the number of leaf nodes of the 
tree, allowing us to efficiently compute the root of the Merkle Tree 
as the row versions get updated. The small space required to 
maintain the intermediate state of the tree is also critical to enable 
partial transaction rollbacks [22] that are supported by most 
RDBMSs. Specifically, when a savepoint is created in the 
transaction, the current state of the Merkle Tree is copied and 
maintained as part of the savepoint information. As more 
operations occur, the transaction Merkle Tree gets updated. 
However, if the transaction rolls back to this savepoint, the earlier 
copy is used to bring the tree back to the state it had when the 
savepoint was created. The logarithmic space needed for 



 

recording the Merkle Tree state allows us to support a large 
number of savepoint with minimal memory footprint and 
overhead. 

3.3 Database Ledger Design 

3.3.1 Data Structure 
As described in Section 2.2, the Database Ledger incrementally 
captures the state of the database as it evolves over time while 
updates occur on Ledger tables. To achieve that, the Database 
Ledger stores an entry for every transaction capturing metadata 
about the transaction, such as its commit timestamp and the 
identity of the user that executed it, but also the Merkle Tree root 
of the rows updated in each Ledger table. These entries are then 
appended to a tamper-evident data structure to allow verifying 
their integrity in the future. The data structure used for the 
Database Ledger needs to meet the following requirements: 

1) High append throughput – Since the Database Ledger 
records every transaction in the system, the data 
structure needs to be able to keep up with the high 
throughput rate of a commercial RDBMS which can 
exceed 100K transactions per second. 

2) Low storage overhead – The number of transactions 
accumulated over time will be significant and the data 
structure must not incur significant overhead over the 
space required for storing the transaction information. 

3) Efficient external verification of the integrity of the data 
structure. As described in the previous section, the 
Database Digest captures the state of the database at 
different points in time. It is important that our data 
structure allows users to verify that a digest generated 
at time t1 can be derived from an earlier digest generated 
at time t0 where t0 < t1. This allows users to confirm that 
the new digest accurately represents the state captured 
in the earlier digest so that they can only maintain the 
latest one. If this verification fails, it indicates that 
earlier data has been tampered with and the new digest 
represents a “forked” state that should not be accepted. 
This enables early detection of a critical class of attacks 
that would lead to generating invalid digests until the 
verification process is executed.  

4) Ability to externally verify that a transaction T is 
included in the ledger in an efficient manner. This 
allows the system to return a proof that a transaction is 
part of the ledger and support non-repudiation even if 
the ledger is tampered with or destroyed. Section 5.1 
discusses this process in more detail. 

It is also important to state that requirements 3 and 4 should be 
supported without compromising the confidentiality of the 
transactions in the ledger since the goal is to allow external 
verification from users who might not have access to individual 
transaction information. 

Figure 5 shows the design of the Database Ledger data structure. 
To satisfy the first and second requirements, we use a Blockchain 
data structure with a large block size (100K transactions per block) 
so that the cost of computing the block-level hashes and storing 
the block information is amortized over a large number of 

transactions. The large block size also helps us meet the third 
requirement since external verification would happen at the block 
level where the number of blocks will be orders of magnitude 
lower than the number of transactions in the system. However, 
the large block size poses difficulties around our fourth 
requirement since users would need to retrieve information for all 
other transactions in the block to successfully verify that a 
transaction of interest is contained there. To address that, instead 
of storing the transactions directly in the block, we create a 
Merkle Tree over the transactions in the block and store its root 
as part of the block information. This technique allows us to 
leverage Merkle Proofs to efficiently prove that a specific 
transaction is contained within a block. Users can simply verify 
the Merkle Proof for the transaction to confirm that the 
transaction was indeed inserted in the ledger. Finally, since the 
block only stores the root hash of the transactions Merkle Tree 
and Merkle Proofs only contain hashes, the third and fourth 
requirement can be satisfied without leaking any information 
about the transactions in the ledger. 

MT Root 
(No previous 

block #)

MT Root 
+

# of Block 0

Block 0 Block 1

MT Root 
+

# of Block N-1

Block N

Tran 1 Tran 2 Tran 3 Tran 4 Tran N-1 Tran N

H1 H2 H3 H4 H(N-1) HN

H12 H34 H(N-1)N

H1234

...

...

HRoot

Transaction ID User Identity Commit Timestamp MT Root for updated rows

 

Figure 5. The Database Ledger data structure. 

Although the Database Ledger logically leverages the Blockchain 
and Merkle Tree data structures, the actual information regarding 
transactions and blocks is physically stored as rows in two new 
system tables: “database ledger transactions” and “database ledger 
blocks” respectively. The former maintains a row with the 
information of each transaction in the ledger, including the ID of 
the block where this transaction belongs and the ordinal of the 
transaction within the block. The latter maintains a row for every 
block in the ledger, including the root of the Merkle Tree over the 
transactions within the block, as well as the hash of the previous 
block to form a Blockchain.  

3.3.2 Atomicity and Durability 
SQL Ledger needs to guarantee that a transaction and any data 
modified by it are captured in the ledger if and only if the 
transaction is successfully committed. The ledger data must also 
be recoverable in case of any system failures. Since the data stored 
in Ledger tables and their corresponding History tables is 
transactionally updated, similar to other user data, SQL Server’s 



 

transactional system automatically satisfies these requirements. 
However, the transaction entries stored in the Database Ledger 
cannot be directly inserted in a database table since this would be 
expensive and cause contention when appending to the last slot 
of the ledger structure, limiting the system throughput. SQL 
Ledger integrates the process of appending transactions to the 
Database Ledger with SQL Server’s recovery subsystem to achieve 
high throughput, atomicity and durability.  

SQL Server follows the ARIES [22] recovery model which depends 
on Write-Ahead-Logging (WAL) and Checkpointing to provide 
atomicity and durability. Specifically, when a transaction 
commits, it generates a COMMIT log record which, once written 
to the log, guarantees that the transaction is durably persisted in 
the system. SQL Ledger extends the transaction commit process 
to a) generate the ledger transaction entry, b) assign it to the latest 
block of the ledger data structure and c) append it to the Database 
Ledger in-memory queue, as part of generating the COMMIT log 
record. These steps only involve modifying in-memory state and 
require minimal synchronization, therefore not incurring any 
noticeable overhead to the commit process which is in the hot 
path of transaction processing. Additionally, the COMMIT log 
record tracks the block ID and ordinal of the transaction within 
the block to make this information recoverable. When a 
checkpoint occurs, any transactions accumulated in the in-
memory queue are batched and inserted into the “database ledger 
transactions” system table that stores the transaction entries. In 
the event of a failure, the Analysis phase of recovery will process 
the COMMIT log records since the last successful checkpoint and 
reconstruct the state of the in-memory queue for any transactions 
that were not written to the system table before the failure. This 
process guarantees the recoverability of the transaction 
information in the Database Ledger. 

When a block becomes full, it is marked as “closed” so that new 
transactions will be inserted in a new block. The block generation 
process then retrieves all transactions that belong to the “closed” 
block from both the in-memory queue and the “database ledger 
transactions” system table, computes the Merkle Tree root over 
these transactions and the hash of the previous block and persists 
the closed block in the “database ledger blocks” system table. Since 
this is a regular table update, its durability is automatically 
guaranteed by the system. To maintain the single chain of blocks, 
this operation is single-threaded, but it is also very efficient, as it 
only computes the hashes over the transaction information, and 
happens asynchronously, thus, not impacting the transaction 
performance. 

3.4 Ledger Verification 

3.4.1 Ledger Verification Invariants 
The ledger verification process is responsible for verifying that 
the latest and the historical data of Ledger tables is consistent with 
the Database Digests that are provided as input. This allows 
detecting any tampering that might have occurred and 
guaranteeing Forward Integrity.  
Although the data of Ledger tables is logically included in the 
Blockchain data structure used by the Database Ledger, the 
various elements of the ledger (latest and historical data, 
transactions and blocks) are physically stored in separate 
relational tables and linked together through their IDs and hashes. 
Additionally, the Ledger and History tables can have non-

clustered indexes that duplicate the base table data and can be 
tampered with independently. Based on that, the ledger 
verification process involves multiple steps that verify the 
following invariants for the individual elements of the ledger: 
Given a set of input Database Digests:  

1) For every digest, the hash captured in the digest for the 
ith block of the Database Ledger Blockchain should be 
equal to the hash computed over the current state of the 
ith block. 

2) For every block in the Blockchain, the hash recorded for 
the previous block should be equal to the hash 
computed over the current state of the previous block. 
The only exception is block 0 where the hash recorded 
for the previous block should be null. 

3) For every block in the Blockchain, the transactions 
Merkle Tree root recorded in the block should be equal 
to the Merkle Tree root computed over the transactions 
that belong to this block in the current state of the 
database. Additionally, all transactions should belong to 
a block that is part of the Blockchain. 

4) For every transaction in the system and Ledger table 
updated by this transaction (as recorded in the 
transaction information), the Merkle Tree root recorded 
in the transaction information should be equal to the 
Merkle tree root computed over the current state of the 
table for all rows that were updated by this transaction. 
Additionally, no Ledger or History table rows should 
reference transactions that are not recorded in the 
system. 

5) The data of every non-clustered index of a Ledger or 
History table should be equivalent to the base table data. 

The verification process can provide cryptographic guarantees for 
the data up to the highest block captured by the input digests. 
Data contained in later blocks can be verified to be consistent 
within the database, but, since it is not covered by a digest, it is 
still susceptible to advanced attacks that can overwrite the data 
and recompute the transaction and block hashes to make them 
consistent. This is the reason why our system has been optimized 
to allow for frequent digest generation so that it can 
cryptographically protect even the most recent data. 

3.4.2 Ledger Verification Implementation 
Since the various elements of the Database Ledger are stored in a 
relational form, in the Ledger and History tables, as well as the 
system tables that store the transaction and block information, 
SQL Ledger leverages SQL Server’s query processing engine to 
execute the verification tasks through queries. This allows us to 
take advantage of the optimized query processing operators for 
performing Joins and Aggregations and leverage parallel query 
execution to minimize the verification time over the potentially 
large volume of data. To achieve that, we expose the row 
serialization, hashing and Merkle Tree computation logic, that is 
used to maintain the ledger during transaction processing, as 
intrinsic and aggregate functions and then generate queries that 
use these functions to verify each of the invariants we defined. 
Specifically, the serialization and hashing logic is exposed as an 



 

intrinsic function, called LEDGERHASH, while the Merkle Tree 
computation logic as an aggregate function, called 
MERKLETREEAGG, that computes the Merkle Tree root over a 
set of rows. 
The verification queries map one to one to the ledger invariants 
and are the following: 

1) Using the OPENJSON function, the JSON array of input 
digests is converted into a relation. We then perform a 
LEFT JOIN with the “database ledger blocks” system 
table based on the Block ID. The query calls the 
LEDGERHASH function to compute the hash of each 
block from the system table and checks for cases where 
a) the hash of the digest does not match the computed 
hash for the block or b) there are digests representing a 
block that is not present in the ledger. 

2) Using the LAG function of SQL Server that allows 
accessing the previous row of a dataset, we scan the 
“database ledger blocks” system table ordered by the 
Block ID. This enables us to access each block together 
with its previous block. We then use the LEDGERHASH 
function to compute the hash of the previous block and 
check whether the computed hash matches what is 
recorded in the current block as is expected for our 
Blockchain data structure. 

3) Using the LEDGERHASH and MERKLETREEAGG 
functions, we scan the “database ledger transactions” 
system table, compute the hash of every transaction and 
then the Merkle Tree root for all transactions belonging 
to each block (GROUP BY the Block ID), ordered by their 
ordinal within the block. We then perform an OUTER 
JOIN of this dataset with the “database ledger blocks” 
system table on the Block ID to identify cases where a) 
the computed Merkle Tree root for the transactions of a 
block does not match what is recorded in the block or b) 
there are transactions that belong to a block that is not 
present in the system. 

4) Similar to the previous query, we use the 
LEDGERHASH and MERKLETREEAGG functions to 
compute the hash of each row version in a Ledger Table 
(and the corresponding History table) and then compute 
the Merkle Tree root over these rows for each 
transaction (GROUP BY the Transaction ID), ordered by 
the sequence number of each row. We then perform an 
OUTER JOIN of this dataset with the “database ledger 
transactions” system table on the Transaction ID to 
identify cases where a) the computed Merkle Tree root 
for the row versions updated by this transaction does 
not match what is recorded in the transaction entry or 
b) there are rows in the Ledger table that belong to a 
transaction that is not recorded in the system. This 
process is then repeated for every Ledger table in the 
database. 

5) For each Ledger table and History table, we use the 
LEDGERHASH and MERKLETREEAGG functions to 
compute the Merkle Tree root of all rows in the table 
after ordering them based on the clustered index key or 

Row Identifier (in the case of Heaps). We then apply the 
same logic to compute the Merkle Root of all rows in 
each of their non-clustered indices and check for cases 
where the hash computed over the base table does not 
match what is computed over the non-clustered index.  

Once all data has been verified using these queries, the 
verification process confirms that the Ledger view definition for 
each Ledger table is valid. This is necessary since the Ledger view 
is also a database artifact that could have been tampered with, 
leading to incorrect results when users attempt to query the ledger 
to detect malicious row modifications. 

3.5 Schema Changes 
Since the data stored in Ledger tables is designed to be immutable, 
schema changes present certain challenges since they 
fundamentally affect the data stored in the table. We distinguish 
schema changes in two categories: physical and logical. Physical 
schema changes refer to operations that affect the physical design 
of the database, such as adding or dropping indexes, primary or 
foreign keys. Logical schema changes correspond to operations 
that logically affect the data stored in a table, such as adding, 
dropping or altering a column or a table.  
Since the hashes captured in the ledger are computed over the 
logical data stored in Ledger tables and are not impacted by the 
indexes and keys defined, physical schema changes can easily be 
supported in our system. However, logical schema changes can 
impact the underlying data of the table and, therefore, require 
special handling to guarantee that they do not affect the data that 
has been recorded in the ledger. This section describes how SQL 
Ledger handles some common logical schema changes. 

3.5.1 Adding Columns 
Adding a nullable column is probably the most common schema 
change as applications evolve over time and need to store 
additional data in their tables. SQL Ledger is designed to handle 
this operation by ignoring NULL values when computing the hash 
of a row version. Based on that, when a nullable column is added, 
SQL Ledger will modify the schema of the Ledger and History 
tables to include the new column, however, this does not impact 
the hashes of existing rows. When the verification process re-
computes these hashes, it will ignore the NULL values for the new 
column and compute a hash that matches what was originally 
recorded in the ledger.  
Although this technique helps us support adding new columns, it 
opens a window for an attacker to tamper with the row 
information that defines which of the columns contain a NULL 
value. This would allow them to modify the way the column 
values are interpreted and return a NULL value for a different 
column instead. This attack is prevented by including the column 
ordinal for all non-NULL columns in our serialization format, 
described in Section 3.2, to explicitly define which columns 
contain non-NULL values. 

3.5.2 Dropping Columns and Tables 
Dropping a column or a table is also frequently used as old data 
becomes irrelevant or while developers are experimenting with 
the schema of their applications. Normally, dropping a 



 

column/table completely erases the underlying data from the 
database and is, therefore, fundamentally incompatible with the 
ledger functionality that requires data to be immutable. Instead of 
deleting the data, SQL Ledger simply renames the objects being 
dropped so that they are logically removed from the user schema 
but physically remain in the database. Any dropped columns are 
also hidden from the Ledger table schema, so that they are 
invisible to the user application. However, the data of such 
dropped objects remains available for the ledger verification 
process, which can still access it based on their object IDs, and 
allows users to inspect any historical data through the 
corresponding Ledger views. 
Despite its usefulness, allowing users to drop an object enables a 
class of attacks that could violate the Forward Integrity 
guarantees our system provides. An attacker can drop an existing 
table and create a new one with the same name but data that has 
been tampered with. The verification process will verify both 
tables (based on their IDs) but when the users query the table, they 
might not realize it is now referring to a different object that could 
have been introduced more recently. To mitigate this risk, SQL 
Ledger stores the metadata of all Ledger tables and columns in two 
updateable Ledger system tables, for tables and columns 
respectively, and exposes all operations that have modified this 
metadata through the corresponding Ledger views. The integrity 
of these tables is verifiable through the regular verification 
process and users can query the views to identify when their 
tables/columns were created/dropped to decide whether this was 
intentional or a potential attack. Figure 6 provides an example of 
the Ledger view tracking the operations that created or dropped 
various Ledger tables. 

Table Name            Table ID Operation
Transaction 

ID

Customers 1 CREATE 100

Orders 2 CREATE 150

LineItems 3 CREATE 160

MS_DroppedTable_Customers 1 DROP 190

Customers 4 CREATE 190  

Figure 6. Ledger system view tracking table operations. 

3.5.3 Altering Column Properties 
SQL Server allows any properties of a column to be altered: data 
type, length, nullability, collation, etc. Any changes that do not 
impact the underlying data of a Ledger table, such as changing 
nullability, collation for Unicode strings or the length of variable 
length columns, are supported without any special handling as 
they do not impact the hashes being captured in the ledger. 
However, any operations that might affect the format of existing 
data, such as changing the data type, are handled by dropping the 
existing column, adding it back with the original name and, 
finally, re-populating it with the original data, including any 
conversion that is required for the type change. The logic to drop 
and add the column follows the semantics we presented in the 
previous sections. 

3.6 Integration with Azure Immutable Blob 
Storage 

As described in Section 2.4, SQL Ledger automates digest 
management by integrating with Azure Immutable Blob Storage 
and periodically uploading digests to append-only, immutable 
BLOBs that cannot be modified by users or even Microsoft 
engineers. During verification, these digests are automatically 
downloaded and used to verify the integrity of the database.  
In the common case, this process is straightforward and simply 
requires accessing a user provided storage account to upload or 
download the JSON documents storing the digest information. 
However, Azure SQL Database supports certain operations that 
allow bringing the database state back to an earlier point in time. 
Although these operations move the database state back in time, 
which is normally considered an attack for SQL Ledger, it is 
important to support them since they are necessary for meeting 
the operational requirements of enterprise users. Specifically, our 
digest management solution needs to address the following 
scenarios: 

• Failover across geographic regions.  
Replication across geographic regions is asynchronous 
for performance reasons and, thus, allows the secondary 
database to be slightly behind compared to the primary. 
In the event of a geographic failover, any latest data that 
has not yet been replicated is lost. 

• Restoring the database back to an earlier point in time, 
also known as Point in Time Restore [20]. 
This is an operation frequently used when a mistake 
occurs and users need to quickly revert the state of the 
database back to an earlier point in time. 

In the case of geographic failovers, the replication delay is 
bounded and normally remains below one second. Based on that, 
SQL Ledger will only issue Database Digests for data that has been 
replicated to geographic secondaries to guarantee that digests will 
never reference data that might be lost in case of a geographic 
failover. This slightly increases the window of vulnerability but, 
given that the introduced delay is normally below 1 second and 
digests are generated every few seconds, the difference should be 
negligible. If replication starts falling further behind, significantly 
delaying the digest generation, SQL Ledger will trigger an alert 
and eventually stop accepting new requests until the secondaries 
are caught up and digests can get successfully generated. 
In the case of restore, the database can be restored to any arbitrary 
point in time and, therefore, deferring digest generation is not an 
option. Instead, when uploading the generated digests to Azure 
Storage, we will capture the “create time” of the database that 
these digests map to. Every time the database is restored, it is 
tagged with a new create time and this technique allows us to 
store the digests across different “incarnations” of the database. 
SQL Ledger preserves the information regarding when a restore 
operation occurred, allowing the verification process to use all the 
relevant digests across the various incarnations of the database. 
Additionally, users can inspect all digests for different create 
times to identify when the database was restored and how far back 



 

it was restored to. Since this data is written in immutable storage, 
this information will be protected as well. 

3.7 Recovery from Tampering 
SQL Ledger cryptographically guarantees Forward Integrity by 
leveraging tamper-evident data structures and verifying their 
integrity through an asynchronous verification process. Although 
this should deter any attackers from attempting to tamper with 
the data, which is not even possible through the official system 
APIs, a determined adversary can still do so by compromising the 
process or modifying the data directly in storage. Such attacks 
cannot be prevented in our system but will be detected when the 
verification process is executed. If the verification fails, bringing 
the database back to a consistent state can be challenging and 
depends on the type of data and how soon the attack gets detected. 
SQL Ledger does not currently automate this process, however, in 
this section, we discuss how users can manually achieve that.  
For this discussion, we make the following assumptions: 

• Earlier backups of the database are available and have 
not been tampered with. These backups can be restored 
and verified to be consistent through the ledger 
verification process. This allows users to recover to a 
consistent state before the tampering occurred. 

• Any attack that attempts to “fork” the ledger 
Blockchain, by overwriting earlier blocks, is detected 
when a digest is generated, following the external 
verification process, described in Section 3.3.1, that 
confirms that each new digest can be derived from the 
previous one. This guarantees that all digests are 
correctly generated over a Blockchain that was never 
forked. 

We then separate the data stored in Ledger tables in two 
categories: 

1) Data that does not affect how future transactions are 
processed, such as the transaction details tracked for 
each financial transaction. 

2) Data that is used for further transaction processing, 
such as the current account balances that define how 
much money a customer can withdraw. 

When data of the first category is tampered with, this event does 
not impact the execution of future transactions which are 
correctly written to the ledger, computing the appropriate hashes 
and generating valid digests. In this case, users can simply restore 
the latest database backup that can be successfully verified and 
repair the data of the original database that has been maliciously 
modified (as reported by the verification process). All generated 
digests will remain valid since the chain was never forked and the 
verification process can succeed, proving the database integrity.  
When data of the second category is tampered with, future 
transactions that use this data for their execution might have also 
been compromised. The outcome of these transactions can be 
invalid, resulting to an incorrect ledger and generated digests. In 
this case, users need to restore the latest backup that can be 
successfully verified and then use that as the basis to re-execute 
the transactions that occurred after this point in time. This process 
can be challenging and, thus, it is critical for the verification 

process to be executed frequently to minimize the number of 
transactions that need to be reprocessed. Additionally, any 
previously generated digests for this period of time need to be 
invalidated and any parties that have been using them, such as 
partners or auditors, should be made aware of this fork in the 
ledger. 

4 PERFORMANCE EVALUATION 
This section presents experimental results regarding the 
performance of SQL Ledger. All our experiments are executed on 
a workstation with 4 sockets, 72 cores (Intel® Xeon® Processor 
E7-8890, 2.50GHz) and 1TB of RAM. External storage consists of 
two 1TB SSDs for data and log respectively. 

4.1 User Workload Performance 
In our first set of experiments, we evaluate the performance of 
SQL Ledger when executing user transactions. SQL Ledger takes 
advantage of the optimized transaction processing engine of SQL 
Server but it must also preserve historical data in the History 
tables and compute the SHA-256 hashes of any modified rows. 
Based on that, we measure the overhead introduced by this 
additional logic and how it impacts the throughput and latency of 
the system. 

4.1.1 Throughout 
Since the overhead introduced by SQL Ledger is mainly around 
row modifications, we evaluate the throughput of the system 
using update intensive OLTP workloads. Specifically, we 
experiment with a TPC-C-like workload that is extremely update 
intensive and should be a worst-case scenario for SQL Ledger, and 
a TPC-E-like workload that represents a more common ratio 
between reads and writes.  
The TPC-C workload simulates an order processing system of a 
wholesale supplier that receives and fulfils orders from customers. 
In this setting, the supplier would want to establish trust with 
their customers by protecting the integrity of the data that tracks 
the order details and, especially, the payment and shipping related 
information. Based on that, we converted four, out of the nine in 
total, TPC-C tables that store order related information to Ledger 
tables. These tables are updated multiple times for every order 
placed to track the order status. 
The TPC-E workload simulates the activity of a stock brokerage 
firm that allows their clients to view their account details and 
submit stock orders, but also generates reports for the brokerage 
firm. Given the financial nature of the scenario, most tables 
contain information that must be protected from tampering since 
it relates to customer positions and stock orders. Based on that, 
we converted all 33 tables into Ledger tables. 
Figure 7 presents the difference in throughput between SQL 
Ledger and traditional SQL Server for these workloads. 
Considering the strong security guarantees that SQL Ledger 
provides and the fact that the vast-majority of applications are not 
as update intensive as TPC-C, we believe that the performance 
degradation should be acceptable for any applications that require 
protecting the integrity of their data. As we anticipated, the 
overhead introduced by SQL Ledger becomes more noticeable in 



 

the case of TPC-C due to the high frequency of updates. According 
to the profile data we collected, inserting the historical data into 
the History table accounts for approximately half of the overhead 
while the hash generation is responsible for the remainder. 

Workload Performance difference 
TPC-C -30.6% 
TPC-E -6.9% 

Figure 7. Throughput of SQL Ledger compared to 
traditional SQL Server. 

Despite the performance degradation compared to traditional SQL 
Server, SQL Ledger was able to scale to the 72 physical cores of 
the workstation without running into any bottlenecks and achieve 
a throughput above 70K transactions per second (tps) for TPC-C-
like transactions. This is more than 20 times higher than what 
state of the art Blockchain systems, like Hyperledger Fabric, can 
achieve, even when evaluated using simpler transactions [1]. 

4.1.2 DML Latency 
In this set of experiments, we measure the latency of different 
types of DML operations on Ledger and regular SQL Server tables. 
Figure 8 demonstrates the latency of single row operations on a 
table that has 260-byte wide rows and a varying number of 
indices.  

 

Figure 8. DML latency for different types of operations and 
number of indices on regular and Ledger tables. 

The overhead introduced by SQL Ledger is smallest in the case of 
Insert operations since these only compute the SHA-256 hash of 
the inserted rows but do not maintain any historical data. This 
accounts for ~12μs/row. In the case of Delete operations, SQL 
Ledger inserts the deleted rows in the History table and computes 
their hash. Τhe History table insertion accounts for an additional 
~18μs/row. Finally, Update operations need to compute the hash 
of each updated row both before and after the update but also 
insert the earlier versions in the History table. Based on that, we 
expect an overhead of approximately (2 * 12 + 18) = 42μs/row 
which is aligned with the results we see in the diagram 
(~40μs/row). 
Although the latency overhead is noticeable, our experiments 
only measure the cost to locate and update a row and exclude the 
cost of committing the transaction that would be dominant and 

add approximately 125μs. Based on that, the latency of short 
transactions that update a small number of rows before 
committing is not significantly impacted. Additionally, the 
observed latency is orders of magnitude lower than state of the art 
Blockchain systems whose latency is in the order of 100s of ms [1] 
due to the decentralized consensus protocols they depend on. 

4.2 Ledger Verification Performance 
The Ledger verification process is a resource intensive operation 
that must verify the integrity of the Database Ledger and then 
scan all rows of Ledger and History tables to recompute their 
SHA-256 hashes and compare them with the corresponding 
digests stored in the Database Ledger. In this section, we evaluate 
the performance of the verification process for different numbers 
of transactions. In our experiments, each transaction updates five 
rows in a Ledger table. Every row is 260 bytes wide. Figure 9 
presents the verification times for different numbers of 
transactions. 

 

Figure 9. Ledger verification times for different numbers 
of transactions. 

As anticipated, the verification time is proportional to the number 
of transactions and row versions that must be processed. 
Although the verification time becomes high when the volume of 
data gets large, it still allows the process to be executed daily, if 
necessary, even for databases that store TBs of data. Finally, 
despite its cost, the verification process can be executed in the 
background without impacting the user workload or even 
offloaded to a separate node, such as a secondary replica or a 
database copy [21] to avoid consuming resources from the 
production instance. 

5 WORK IN PROGESS 
In this section, we discuss our ongoing work on future 
enhancements of SQL Ledger. The additional functionality 
intends to improve the security guarantees of the system by 
supporting non-repudiation and allow users to manage the size of 
their database by truncating old ledger data that is no longer 
needed. 

5.1 Non-repudiation 
SQL Ledger already supports a limited form of non-repudiation as 
the organization hosting the data cannot dispute the outcome of 



 

previously executed transactions without tampering with the 
ledger, which is detectable. However, if the ledger is tampered 
with or destroyed, there is no way for a user to prove that a 
specific transaction, such as a large money deposit, occurred. A 
naïve approach to address that would be to cryptographically sign 
every transaction with a public/private key pair and return this 
signature to the user executing the transaction. This is not a viable 
option, though, due to the high cost of computing asymmetric 
signatures. Instead, by leveraging the Merkle Tree structure of the 
Database Ledger, SQL Ledger can generate a “receipt” for each 
transaction, containing a) the Merkle Proof for the transaction, 
which proves that it is part of the block, and b) the signature of 
the tree root for the corresponding block. This allows us to 
generate a receipt for each of the 100K transactions in a block with 
only one signing operation. 

5.2 Ledger Truncation 
Since SQL Ledger maintains all historical data and transaction 
information, the database size will grow over time. Although 
Azure SQL Database supports scaling database storage to 10s of 
TBs [2], users will still prefer to delete unnecessary data to reduce 
cost. Additionally, compliance regulations require storing 
historical data for a bounded amount of time and not perpetually. 
Based on that, our goal is to support truncating old ledger and 
historical data that is no longer needed. Historical data is easy to 
truncate because no other data elements reference it. Old 
Database Ledger blocks and transactions, however, can still 
maintain digests representing the current data of a Ledger table, 
if this has not been recently updated. To allow deleting old 
transaction and blocks, the truncation operation will first trigger 
the verification process to guarantee that any current data is 
consistent and then perform a dummy update on any Ledger table 
data that references a transaction that is going to be truncated. 
This process effectively moves the digests of this data into new 
transactions and blocks so that old ones can be safely truncated. 
Finally, a record indicating that a ledger truncation occurred will 
be recorded into the ledger to guarantee that this operation is 
audited. 

6 RELATED WORK 
In the research community, there has been a rich body of work [3, 
5, 6, 10, 13, 15, 23, 26, 27, 29, 30] on technologies that support 
verifying the integrity of data hosted in untrusted environments. 
These systems can be categorized based: a) whether they depend 
on Trusted Hardware, such as Intel SGX enclaves [17], b) whether 
they support updates or only queries and c) whether they verify 
the completeness and correctness of query results. Despite their 
technical merit, these solutions did not get enough traction in the 
industry to become part of commercial data management 
solutions. 
With the launch of Bitcoin, and largely due to its financial success, 
we see renewed interest in the space of data integrity and a wide 
range of Blockchain and Distributed Ledger Technology (DLT) 
systems [1, 8, 9, 11, 12, 24] being released over the last years. 
Although these technologies can also be used to protect the 

integrity of centralized data, their decentralized design makes 
them complex to manage and severely impacts their performance, 
which is orders of magnitude lower compared to production 
RDBMSs. Amazon QLDB [4] and Oracle Blockchain tables [25] 
attempt to bridge the gap between distributed ledgers and 
databases, by offering a centralized solution that leverages the 
cryptographic data structures of Blockchains. Similar to SQL 
Ledger, QLDB stores data in a Blockchain and allows extracting 
digests to verify its integrity. However, verification occurs at the 
document level and does not provide a mechanism to verify the 
whole dataset that would be necessary to guarantee query 
correctness. Additionally, QLDB is a document store and does not 
provide the rich capabilities of an RDBMS. Oracle Blockchain 
tables, on the other hand, are fully integrated in the Oracle 
database, but only support insertions and, more importantly, do 
not expose digests outside of the database. Based on that, users 
must trust the RDBMS which is what these solutions intend to 
avoid in the first place. Finally, systems like BigchainDB [16] and 
ChainifyDB [28] maintain the decentralized architecture of DLTs, 
that enables multi-party computation, but integrate with database 
systems to leverage the rich data model and high performance of 
relational databases. 
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