
SQL Ledger: Cryptographically Verifiable Data in
Azure SQL Database

Panagiotis Antonopoulos, Raghav Kaushik, Hanuma Kodavalla, Sergio Rosales Aceves, Reilly Wong,
Jason Anderson, Jakub Szymaszek

 Microsoft
Redmond, WA, USA

{panant, skaushi, hanumak, srosales, rewong, janders, jaszymas}@microsoft.com

ABSTRACT
SQL Ledger is a new technology that allows cryptographically
verifying the integrity of relational data stored in Azure SQL
Database and SQL Server. This is achieved by maintaining all
historical data in the database and persisting its cryptographic
(SHA-256) digests in an immutable, tamper-evident ledger.
Digests representing the overall state of the ledger can then be
extracted and stored outside of the RDBMS to protect the data
from any attacker or high privileged user, including DBAs, system
and cloud administrators. The ledger and the historical data are
managed transparently, offering protection without any
application changes. Historical data is maintained in a relational
form to support SQL queries for auditing, forensics and other
purposes. SQL Ledger provides cryptographic data integrity
guarantees while maintaining the power, flexibility and
performance of a commercial RDBMS. In contrast to Blockchain
solutions that aim for full integrity, SQL Ledger offers a form of
integrity protection known as Forward Integrity. The proposed
technology is significantly cheaper and more secure than
traditional solutions that establish trust based on audits or
mediators, but also has substantial advantages over Blockchain
solutions that are complex to deploy, lack data management
capabilities and suffer in terms of performance due to their
decentralized nature.

CCS CONCEPTS
• Information systems → DBMS engine architectures; • Se-
curity and privacy → Database and storage security;

KEYWORDS
Database Security; Integrity Protection; Data Verifiability; Ledger;
Blockchain; Cryptographic Verifiability

ACM Reference format:

Panagiotis Antonopoulos, Raghav Kaushik, Hanuma Kodavalla, Sergio
Rosales Aceves, Reilly Wong, Jason M. Anderson, Jakub Szymaszek. 2021.
SQL Ledger: Cryptographically Verifiable Data in Azure SQL Database. In
Proceedings of SIGMOD '21, June 20–25, 2021, Virtual Event, China. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3448016.3457558

1 INTRODUCTION
Establishing trust around the integrity of data stored in database
systems has been a long-standing problem for all organizations
that manage financial, medical or other sensitive data. Systems
that maintain such data are also known as Systems of Record
(SOR) and need to guarantee the fidelity of their data for legal and
compliance reasons. This is extremely challenging since attackers
or high privileged users, such as DBAs or system administrators
who have full control of the system, can easily tamper with the
data and erase any traces of their actions. Additionally, as more
organizations move their data into the cloud, the cloud provider
and any operators also need to be trusted to maintain the integrity
of the data they manage, significantly expanding the trust
boundary.
Traditionally, organizations have depended on complicated, time-
consuming monitoring and auditing solutions to detect
unauthorized operations and certify that their systems meet the
expected security standards. Alternatively, they might involve
trusted intermediaries to host their sensitive data who in turn
have gone through similar processes to establish trust. These
solutions are expensive but also incomplete, as audits cannot fully
model a system and discover all its vulnerabilities.
Blockchain systems, which were originally established by Bitcoin
[24], introduce a revolutionary technology for guaranteeing the
integrity of data and business logic in an untrusted environment.
They form a network of participants who execute transactions
using a decentralized, Byzantine fault-tolerant [14] consensus
protocol and validate the correct execution of every transaction.
The data is stored in various forms of tamper-evident data
structures, such as Blockchains (linked lists of hashed blocks) or
Merkle Trees [18], to allow each participant to efficiently verify
that their state is consistent with the other participants. The
Blockchain technology is designed for environments where there
is no or very limited trust and only a majority of participants can
be trusted. However, due to its decentralized nature, it presents
significant challenges when used for real-world, production

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
SIGMOD '21, June 20–25, 2021, Virtual Event, China
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8343-1/21/06…$15.00
https://doi.org/10.1145/3448016.3457558

workloads. Even state of the art Blockchain systems, such as
Hyperledger Fabric [1], lack the advanced data management
capabilities of an RDBMS, use custom programming languages
that do not integrate with the existing tooling and reporting
ecosystem and, more importantly, provide more than an order of
magnitude lower throughput and higher latency than a
commercial RDBMS.
While there are scenarios that merit the strong security
guarantees that the Blockchain technology offers, there are many
scenarios, especially around SORs, where using a Blockchain
solution is an overkill and does not justify the cost and
performance overhead. SQL Ledger is a new technology that
addresses the latter scenarios by offering a different point in the
security-cost/performance spectrum. It maintains the power,
flexibility and performance of a commercial RDBMS and can be
centrally managed, like a traditional RDBMS. However, it still
offers strong security guarantees that are based on the notion of
Forward Integrity [7]. Briefly, Forward Integrity assumes that the
RDBMS is trusted until the time a transaction is processed and
only offers protection against future attacks. We believe that
Forward Integrity is sufficient for a wide class of real-world
applications where the organization hosting the data is generally
trusted but must be able to attest to the authenticity of the data
and prove that it has not been tampered with. SQL Ledger
achieves that by leveraging the core data structures from the
Blockchain technology to capture the state of the database in
compact, cryptographic digests. These digests can be stored
outside of the database or shared with any parties that need to
validate the integrity of the data and used at a later point in time
to verify that the data has not been tampered with.
This paper describes the overall design of SQL Ledger and is
organized as follows: Section 2 outlines the architecture of our
system and the functionality exposed. Section 3 covers the
detailed design of the various components. Section 4 presents our
experimental results regarding the performance of the system.
Finally, Section 5 discusses our ongoing work to extend the
functionality of the system.

2 OVERVIEW
This section provides an overview of SQL Ledger and describes
the main components of the system, as demonstrated in Figure 1.
We also discuss the threat model and integrity guarantees of our
technology.

2.1 Ledger Tables
SQL Ledger introduces a new type of tables, called Ledger tables,
that is designed to protect the integrity of the underlying data
without requiring any application changes. Ledger tables are
relational tables that can use all SQL features that are available for
regular tables. In addition, they allow users to detect malicious
data modifications and cryptographically verify the data integrity:

• All historical data of Ledger tables is transparently
maintained in the system and exposed to users for
auditing and forensic purposes. Malicious users can
update the content of Ledger tables, using regular DML

operations, and tamper with the data. The historical
data can be used to analyze the operations executed on
and detect unexpected or malicious modifications.

• All latest and historical data of Ledger tables is
cryptographically hashed, using the SHA-256
algorithm. This allows the system to capture the state of
the data in a compact digest and use that to
cryptographically verify its integrity later.
Cryptographic verifiability protects data against
sophisticated attacks where the adversary manages to
bypass the earlier logic that audits modifications and
preserves historical data. For example, by compromising
the RDBMS process or overwriting the data directly at
the storage layer.

There are two types of Ledger tables: append-only and updateable.
Append-only tables only support insertions and are designed for
auditing scenarios where updates and deletions are not allowed.
Updateable tables allow all operations and can be used as regular
tables by any SQL application. In the case of updateable tables, all
earlier versions of a row are preserved in a secondary table,
known as the History table, that mirrors the schema of the Ledger
table. When a row is updated, the latest version of the row
remains in the Ledger table, while its earlier version is inserted
into the History table by the system, transparently to the
application.

Figure 1. SQL Ledger architecture

For every Ledger table, the system automatically generates a view,
called Ledger view, that reports all row modifications that have
occurred on this table by leveraging the historical data in the
History table. This enables users, their partners and auditors to
analyze all historical operations and detect potential tampering.
Each row operation is accompanied by the ID of the transaction
that performed it, allowing users to retrieve more information
about the time the transaction was executed, the identity of the
user who executed it and correlate it to other operations
performed by this transaction. Figure 2 provides an example of an
updateable Ledger table with the corresponding History table and
Ledger view.
Finally, all latest and historical row versions are cryptographically
hashed, as they get updated, to capture the state of the Ledger

table. The corresponding digests are persisted in a tamper-
evident, append-only data structure that is described in the next
section.

Ledger table

Name Balance

Nick $50

Joe $30

History table

Name Balance Operation Transaction ID

Nick $50 INSERT 10

John $500 INSERT 13

Joe $30 INSERT 16

Mary $200 INSERT 17

Nick $50 DELETE 20

Nick $100 INSERT 20

Joe $30 DELETE 23

Ledger view
Name Balance

Nick $100

John $500

Mary $200

Figure 2. Sample updateable Ledger table, History table
and Ledger view for a table storing account balances.

2.2 Database Ledger
A naïve approach for protecting the integrity of a Ledger table
would be to periodically compute the SHA-256 hash of all its rows,
including the rows of the corresponding History table to also
protect any historical data. The generated digest would then be
used at a later point to verify the integrity of the data by restoring
the tables back to the time the digest was generated, recomputing
the hash over their rows and, finally, verifying that the new hash
matches the original digest. This might be practical for small
tables but, when it comes to production workloads, with TBs of
data that is continuously updated, the cost of computing the hash
across the whole dataset frequently enough to provide actual
protection is prohibitive.
To address this challenge, we leverage ideas from the Blockchain
community and incrementally maintain the hashes of all Ledger
tables in a Blockchain data structure, called Database Ledger.
Since transactions are the unit of atomicity for any RDBMS, this
is the unit of work being captured in the Database Ledger.
Specifically, when a transaction commits, the SHA-256 hash of
any Ledger table rows that were modified by this transaction,
together with some metadata for the transaction, such as the
identity of the user that executed it and its commit timestamp, are
appended as a “transaction entry” in the Database Ledger. When
several transactions get appended, we form a block that contains
the entries of all transactions in this block, but also the hash of the
previous block, forming a Blockchain. Using this technique, we
only need to incrementally compute the hashes of rows being
modified and not the overall dataset. The trade-off compared to
the naïve approach is that our ledger needs to maintain
information for all historical data and transactions; however, since
our system maintains historical data to allow users to detect
malicious modifications on Ledger tables, this is anyways
necessary. Figure 3 presents the Database Ledger structure.
The hash of the latest block in the Database Ledger is known as
the Database Digest and represents the state of all Ledger tables
in the database at the time when this block was generated.
Generating a Database Digest is extremely efficient since it only
involves computing the hashes of the blocks that were recently
appended. This allows users to extract a digest of the database

state very frequently, even every second, and use it later for
verifying the data integrity. SQL Ledger exposes an API for users
to generate a Database Digest in the form of a JSON document
that contains the hash of the latest block together with metadata
regarding the block ID, the time the digest was generated and the
commit timestamp of the last transaction in this block.

Ledger table

Name Balance

Nick $50

History table

Name Balance

Nick $100

John $500

Mary $200

Database Ledger

Initial block
(No previous

block #)

Trans Info 1

Trans Info N

Block 0 Block 1 Block N

Transaction Info:
• Transaction Id
• User identity
• Commit Timestamp
• # of updated rows

Aggregated hash for all rows
updated by Transaction X

of Block 0

Trans Info 1

Trans Info N

of Block N-1

Figure 3. The Database Ledger.

2.3 Ledger Verification
Although our system does not allow users to modify the content
of the ledger, an attacker or system administrator who has control
of the machine can bypass all system checks and directly tamper
with the data, for example by editing the database files in storage.
SQL Ledger cannot prevent such attacks but guarantees that any
tampering will be detected when the ledger data is verified. The
Ledger Verification process takes as input one or more previously
generated Database Digests and recomputes all the hashes stored
in the Database Ledger based on the current state of Ledger tables.
If the computed hashes do not match the input digests, the
verification fails, indicating that the data has been tampered with,
and reports all inconsistencies detected.
The verification process scans all Ledger and History tables and
recomputes the SHA-256 hashes for their rows to verify the
digests stored in the Database Ledger. It is, therefore, a resource
intensive process that is expected to be executed only when users
need to verify the integrity of their database. It can be executed
hourly or daily, for cases where the integrity of the database needs
to be continuously monitored, or only when the organization
hosting the data goes through an audit and needs to provide
cryptographic evidence regarding the authenticity of their data.
To reduce the cost of verification, our system exposes options to
verify individual Ledger tables or only a subset of the ledger.

2.4 Digest Management
The verification process and, therefore, the integrity of the
database depends on the integrity of the input digests. For this
purpose, Database Digests that are extracted from the database
need to be stored in a trusted location that cannot be tampered
with by the high privileged users or attackers of the RDBMS. SQL
Ledger integrates with Azure Immutable Blob Storage [19] to
periodically (every few seconds) upload Database Digests in
immutable, append-only BLOBs that do not allow future
modifications by any users or even Microsoft engineers. This

provides a simple and cost-effective way for users to automate
digest management without having to worry about their
availability and geographic replication. Additionally, our system
allows users to generate a Database Digest on demand so that they
can manually store it in any service or device that they consider
trusted. Using this mechanism, users with stricter security
requirements can store digests outside of the Microsoft cloud,
removing Microsoft from the trust boundary. For example,
Database Digests can be stored in an on-premise WORM device,
uploaded to a Public Blockchain, such as Bitcoin or Ethereum [11],
or even signed with the company’s private/public key pair, to
guarantee their authenticity, and shared with any customers,
partners or auditors who can later use them to verify the
corresponding data.

2.5 Integrity Guarantees and Threat Model

2.5.1 Integrity Guarantees
As discussed in Section 1, SQL Ledger offers a less well-known
notion of integrity called Forward Integrity. The idea is that the
system is trusted until the time when a transaction is processed,
and data integrity is protected against future compromises of the
system.
Let us use a real-world scenario to explain how Forward Integrity,
although weaker than full integrity, can address a wide range of
scenarios: Contoso is a car manufacturer that uses a database to
track the parts manufactured and their lifecycle. Bob bought a car
made by Contoso in 2018. In 2020, Bob has a collision and he soon
finds out that Contoso had issued a recall for certain batches of
brake parts that they manufactured. He, then, files a lawsuit
against Contoso claiming that defective parts were used on his car
and are responsible for the collision, but he was never notified as
part of the recall process. Contoso now needs to prove that the
parts used on Bob’s car were not part of the defective batches that
were recalled. Unless Contoso is using a technology to protect
data integrity, one of their DBAs or system administrators can
easily tamper with the part related data and provide false
information, therefore making such evidence unreliable. In this
scenario, Contoso is generally an honest company that tracks
their parts lifecycle correctly since they do not have any motive
to do otherwise. Therefore, all parts used in Bob’s car are
originally tracked correctly in their database. When the defective
parts are identified later or, more importantly, when the lawsuit
happens, Contoso or some of their employees might be motivated
to tamper with the data to their advantage. Forward Integrity
protects against such attacks where an adversary (internal or
external) attempts to tamper with the data after it has been
originally written in the system. This is a very common pattern in
real-world scenarios as enterprises generally act honestly until a
specific event might put their finances or reputation at risk,
motivating them to act maliciously.
SQL Ledger guarantees Forward Integrity by leveraging
cryptographically tamper-evident data structures under the
following assumptions:

1) The user operation that originally updated the data in
the Ledger table was processed correctly and remained

valid until a Database Digest was generated (which
occurs within a few seconds). This assumption is
aligned with the definition of Forward Integrity which
intends to protect data from future tampering.

2) The Database Digests used for verification are stored in
a separate, trusted location that cannot be tampered
with by the adversary.

3) The ledger verification process can be executed in a
trusted environment. This can be achieved in the
original environment itself if the users trust it, or by
restoring the database in a different trusted
environment.

2.5.2 Threat Model
We aim to protect data integrity against strong adversaries who
have total control of the database, the operating system (OS) and
the machine where the RDBMS is running. A strong adversary has
full power over the system and can mount any attack, such as a)
modify the data stored in the database using the supported
database APIs, b) modify the data bypassing the database layer
and directly updating it in storage or c) manipulate the execution
of the RDBMS and the OS (for example by attaching a debugger)
for their advantage.

3 DETAILED DESIGN
In this section, we describe the detailed design of the various
components of SQL Ledger and how they interact with each other.
We focus on updateable Ledger tables since they represent the
more generic case, supporting all DML operations.

 3.1 Ledger Table Schema Extensions
The schema of Ledger and History tables is automatically
extended to include four additional columns that are internally
populated by the system and track:

• The ID of the transaction that generated the row
version.

• The sequence number of the operation that generated
the row version.

• The ID of the transaction that deleted the row version.
• The sequence number of the operation that deleted the

row version.
These columns are hidden from the users to guarantee
transparency for the application using the table but are still
exposed through the Ledger view. The transaction information is
used to correlate the row versions modified by a transaction to the
corresponding transaction entry in the Database Ledger. This
allows users to retrieve metadata regarding the transactions that
performed these operations but, more importantly, it is used by
the verification process to identify all modifications performed by
each transaction. The operation sequence numbers store the order
within a transaction in which the row versions were updated. This
is necessary because the row versions are hashed in the order in
which they are updated and the verification process must use the
same order when re-computing the hash for verification purposes.

3.2 DML Operations and Row Hashing
Any operations that update a Ledger table need to perform some
additional tasks to maintain the historical data and compute the
digests captured in the Database Ledger. Specifically, for every
row updated, we must:

• Persist the earlier version of the row in the history table.
• Assign the transaction ID and generate a new sequence

number, persisting them in the appropriate system
columns.

• Serialize the row content and include it when
computing the hash for all rows updated by this
transaction.

SQL Ledger achieves that by extending the DML query plans of
all insert, update and delete operations targeting Ledger tables. As
part of inserting or updating a row, the transaction ID and newly
generated sequence number are set for the new version of the row.
Then, the query plan operator executes a special expression that
serializes the row content and computes its hash, appending it to
a Merkle Tree that is stored at the transaction level and contains
the hashes of all row versions updated by this transaction for this
Ledger table. The root of the tree represents all the updates
performed by this transaction in this Ledger table. If the
transaction updates multiple tables, a separate Merkle Tree is
maintained for each table.
If the operation also deletes a row version, by doing a delete or
update, the deleted row version is propagated to an additional
operator that also assigns the transaction ID and new sequence
number for the deleted version and inserts it into the
corresponding History table. The deleted row version is also
hashed and appended to the same Merkle Tree. When the
transaction commits, it will compute the root for each Merkle Tree
and store it as part of the transaction entry that is recorded in the
Database Ledger in tuples of the form (ledger_table_id,
merkle_root_hash).

Row 1 Row 2 Row 3 Row 4 Row N-1 Row N

H1 H2 H3 H4 H(N-1) HN

H12 H34 H(N-1)N

H1234

...

...

HRoot

of
columns

1st column
ordinal

1st column
type & length

1st column
value

... Nth column
ordinal

Nth column
type & length

Nth column
value

Figure 4. Sample Merkle Tree of updated rows.

Figure 4 shows an example of a Merkle Tree storing the updated
row versions of a ledger table and the format used to serialize the
rows. Other than the serialized value of each column, we include
metadata regarding the number of columns in the row, the ordinal
of individual columns, the data types, lengths and other
information that affects how the values are interpreted. This is

important because an attacker can tamper with the metadata of a
Ledger table and cause the data to be interpreted incorrectly
without ever tampering with the data itself. To better understand
this, let us take a simple example of a table with two columns:
“Column1” of type INT (4 bytes) and “Column2” of type
SMALLINT (2 bytes). Now, let us assume that we have a row
where Column1 = 0x12 and Column2 = 0x34. If our format only
serialized the column values, the serialized form of this row would
be: 0x000000120034. If the attacker tampers with the metadata and
declares Columns1 as SMALLINT and Column2 as INT, the overall
serialized value would not change but the data would now be
interpreted as Column1 = 0 and Column2 = 0x120034, leading to
incorrect results when querying the Ledger table. By including the
metadata of the columns, we guarantee that the verification
process will also detect attacks that affect the data interpretation.

3.2.1 Merkle Tree Algorithm
By appending the updated row versions in a Merkle Tree, we can
represent all the versions updated by a transaction with the root
of the Merkle Tree. This is very efficient since it reduces a
potentially huge volume of data down to a single SHA-256 hash
that can be stored in the transaction metadata. The challenge,
however, is that the number of versions updated can be very large
and is not known upfront. Additionally, it would be inefficient to
re-process them after the operation has completed. For that
purpose, we developed a streaming algorithm that computes the
root of a Merkle Tree while the row versions get updated. Our
algorithm works as follows:
Let NL,i be the ith node of level L. For each level L, we store the last
node that was appended to this level: NL,i, where i is the last node
of the level. When a new node Nl,i+1 is appended to the level:

• If i+1 is odd, we simply store this node as the last node
of this level.

• If i+1 is even, we compute the hash of the new node
(NL,i+1), combined with the previous node we have
stored for the level (NL,i), per the Merkle Tree definition,
and append the resulting hash as a new node for the
parent level (L+1).

This process is executed recursively as long as a new node needs
to be appended to the parent level. When all leaf nodes have been
appended to the Merkle Tree, if the last node does not have a
sibling, we promote the node itself as its parent. This is also
executed recursively until we reach the root of the tree.
The time complexity of this algorithm is O(N) and the space
complexity O(logN), where N is the number of leaf nodes of the
tree, allowing us to efficiently compute the root of the Merkle Tree
as the row versions get updated. The small space required to
maintain the intermediate state of the tree is also critical to enable
partial transaction rollbacks [22] that are supported by most
RDBMSs. Specifically, when a savepoint is created in the
transaction, the current state of the Merkle Tree is copied and
maintained as part of the savepoint information. As more
operations occur, the transaction Merkle Tree gets updated.
However, if the transaction rolls back to this savepoint, the earlier
copy is used to bring the tree back to the state it had when the
savepoint was created. The logarithmic space needed for

recording the Merkle Tree state allows us to support a large
number of savepoint with minimal memory footprint and
overhead.

3.3 Database Ledger Design

3.3.1 Data Structure
As described in Section 2.2, the Database Ledger incrementally
captures the state of the database as it evolves over time while
updates occur on Ledger tables. To achieve that, the Database
Ledger stores an entry for every transaction capturing metadata
about the transaction, such as its commit timestamp and the
identity of the user that executed it, but also the Merkle Tree root
of the rows updated in each Ledger table. These entries are then
appended to a tamper-evident data structure to allow verifying
their integrity in the future. The data structure used for the
Database Ledger needs to meet the following requirements:

1) High append throughput – Since the Database Ledger
records every transaction in the system, the data
structure needs to be able to keep up with the high
throughput rate of a commercial RDBMS which can
exceed 100K transactions per second.

2) Low storage overhead – The number of transactions
accumulated over time will be significant and the data
structure must not incur significant overhead over the
space required for storing the transaction information.

3) Efficient external verification of the integrity of the data
structure. As described in the previous section, the
Database Digest captures the state of the database at
different points in time. It is important that our data
structure allows users to verify that a digest generated
at time t1 can be derived from an earlier digest generated
at time t0 where t0 < t1. This allows users to confirm that
the new digest accurately represents the state captured
in the earlier digest so that they can only maintain the
latest one. If this verification fails, it indicates that
earlier data has been tampered with and the new digest
represents a “forked” state that should not be accepted.
This enables early detection of a critical class of attacks
that would lead to generating invalid digests until the
verification process is executed.

4) Ability to externally verify that a transaction T is
included in the ledger in an efficient manner. This
allows the system to return a proof that a transaction is
part of the ledger and support non-repudiation even if
the ledger is tampered with or destroyed. Section 5.1
discusses this process in more detail.

It is also important to state that requirements 3 and 4 should be
supported without compromising the confidentiality of the
transactions in the ledger since the goal is to allow external
verification from users who might not have access to individual
transaction information.

Figure 5 shows the design of the Database Ledger data structure.
To satisfy the first and second requirements, we use a Blockchain
data structure with a large block size (100K transactions per block)
so that the cost of computing the block-level hashes and storing
the block information is amortized over a large number of

transactions. The large block size also helps us meet the third
requirement since external verification would happen at the block
level where the number of blocks will be orders of magnitude
lower than the number of transactions in the system. However,
the large block size poses difficulties around our fourth
requirement since users would need to retrieve information for all
other transactions in the block to successfully verify that a
transaction of interest is contained there. To address that, instead
of storing the transactions directly in the block, we create a
Merkle Tree over the transactions in the block and store its root
as part of the block information. This technique allows us to
leverage Merkle Proofs to efficiently prove that a specific
transaction is contained within a block. Users can simply verify
the Merkle Proof for the transaction to confirm that the
transaction was indeed inserted in the ledger. Finally, since the
block only stores the root hash of the transactions Merkle Tree
and Merkle Proofs only contain hashes, the third and fourth
requirement can be satisfied without leaking any information
about the transactions in the ledger.

MT Root
(No previous

block #)

MT Root
+

of Block 0

Block 0 Block 1

MT Root
+

of Block N-1

Block N

Tran 1 Tran 2 Tran 3 Tran 4 Tran N-1 Tran N

H1 H2 H3 H4 H(N-1) HN

H12 H34 H(N-1)N

H1234

...

...

HRoot

Transaction ID User Identity Commit Timestamp MT Root for updated rows

Figure 5. The Database Ledger data structure.

Although the Database Ledger logically leverages the Blockchain
and Merkle Tree data structures, the actual information regarding
transactions and blocks is physically stored as rows in two new
system tables: “database ledger transactions” and “database ledger
blocks” respectively. The former maintains a row with the
information of each transaction in the ledger, including the ID of
the block where this transaction belongs and the ordinal of the
transaction within the block. The latter maintains a row for every
block in the ledger, including the root of the Merkle Tree over the
transactions within the block, as well as the hash of the previous
block to form a Blockchain.

3.3.2 Atomicity and Durability
SQL Ledger needs to guarantee that a transaction and any data
modified by it are captured in the ledger if and only if the
transaction is successfully committed. The ledger data must also
be recoverable in case of any system failures. Since the data stored
in Ledger tables and their corresponding History tables is
transactionally updated, similar to other user data, SQL Server’s

transactional system automatically satisfies these requirements.
However, the transaction entries stored in the Database Ledger
cannot be directly inserted in a database table since this would be
expensive and cause contention when appending to the last slot
of the ledger structure, limiting the system throughput. SQL
Ledger integrates the process of appending transactions to the
Database Ledger with SQL Server’s recovery subsystem to achieve
high throughput, atomicity and durability.

SQL Server follows the ARIES [22] recovery model which depends
on Write-Ahead-Logging (WAL) and Checkpointing to provide
atomicity and durability. Specifically, when a transaction
commits, it generates a COMMIT log record which, once written
to the log, guarantees that the transaction is durably persisted in
the system. SQL Ledger extends the transaction commit process
to a) generate the ledger transaction entry, b) assign it to the latest
block of the ledger data structure and c) append it to the Database
Ledger in-memory queue, as part of generating the COMMIT log
record. These steps only involve modifying in-memory state and
require minimal synchronization, therefore not incurring any
noticeable overhead to the commit process which is in the hot
path of transaction processing. Additionally, the COMMIT log
record tracks the block ID and ordinal of the transaction within
the block to make this information recoverable. When a
checkpoint occurs, any transactions accumulated in the in-
memory queue are batched and inserted into the “database ledger
transactions” system table that stores the transaction entries. In
the event of a failure, the Analysis phase of recovery will process
the COMMIT log records since the last successful checkpoint and
reconstruct the state of the in-memory queue for any transactions
that were not written to the system table before the failure. This
process guarantees the recoverability of the transaction
information in the Database Ledger.

When a block becomes full, it is marked as “closed” so that new
transactions will be inserted in a new block. The block generation
process then retrieves all transactions that belong to the “closed”
block from both the in-memory queue and the “database ledger
transactions” system table, computes the Merkle Tree root over
these transactions and the hash of the previous block and persists
the closed block in the “database ledger blocks” system table. Since
this is a regular table update, its durability is automatically
guaranteed by the system. To maintain the single chain of blocks,
this operation is single-threaded, but it is also very efficient, as it
only computes the hashes over the transaction information, and
happens asynchronously, thus, not impacting the transaction
performance.

3.4 Ledger Verification

3.4.1 Ledger Verification Invariants
The ledger verification process is responsible for verifying that
the latest and the historical data of Ledger tables is consistent with
the Database Digests that are provided as input. This allows
detecting any tampering that might have occurred and
guaranteeing Forward Integrity.
Although the data of Ledger tables is logically included in the
Blockchain data structure used by the Database Ledger, the
various elements of the ledger (latest and historical data,
transactions and blocks) are physically stored in separate
relational tables and linked together through their IDs and hashes.
Additionally, the Ledger and History tables can have non-

clustered indexes that duplicate the base table data and can be
tampered with independently. Based on that, the ledger
verification process involves multiple steps that verify the
following invariants for the individual elements of the ledger:
Given a set of input Database Digests:

1) For every digest, the hash captured in the digest for the
ith block of the Database Ledger Blockchain should be
equal to the hash computed over the current state of the
ith block.

2) For every block in the Blockchain, the hash recorded for
the previous block should be equal to the hash
computed over the current state of the previous block.
The only exception is block 0 where the hash recorded
for the previous block should be null.

3) For every block in the Blockchain, the transactions
Merkle Tree root recorded in the block should be equal
to the Merkle Tree root computed over the transactions
that belong to this block in the current state of the
database. Additionally, all transactions should belong to
a block that is part of the Blockchain.

4) For every transaction in the system and Ledger table
updated by this transaction (as recorded in the
transaction information), the Merkle Tree root recorded
in the transaction information should be equal to the
Merkle tree root computed over the current state of the
table for all rows that were updated by this transaction.
Additionally, no Ledger or History table rows should
reference transactions that are not recorded in the
system.

5) The data of every non-clustered index of a Ledger or
History table should be equivalent to the base table data.

The verification process can provide cryptographic guarantees for
the data up to the highest block captured by the input digests.
Data contained in later blocks can be verified to be consistent
within the database, but, since it is not covered by a digest, it is
still susceptible to advanced attacks that can overwrite the data
and recompute the transaction and block hashes to make them
consistent. This is the reason why our system has been optimized
to allow for frequent digest generation so that it can
cryptographically protect even the most recent data.

3.4.2 Ledger Verification Implementation
Since the various elements of the Database Ledger are stored in a
relational form, in the Ledger and History tables, as well as the
system tables that store the transaction and block information,
SQL Ledger leverages SQL Server’s query processing engine to
execute the verification tasks through queries. This allows us to
take advantage of the optimized query processing operators for
performing Joins and Aggregations and leverage parallel query
execution to minimize the verification time over the potentially
large volume of data. To achieve that, we expose the row
serialization, hashing and Merkle Tree computation logic, that is
used to maintain the ledger during transaction processing, as
intrinsic and aggregate functions and then generate queries that
use these functions to verify each of the invariants we defined.
Specifically, the serialization and hashing logic is exposed as an

intrinsic function, called LEDGERHASH, while the Merkle Tree
computation logic as an aggregate function, called
MERKLETREEAGG, that computes the Merkle Tree root over a
set of rows.
The verification queries map one to one to the ledger invariants
and are the following:

1) Using the OPENJSON function, the JSON array of input
digests is converted into a relation. We then perform a
LEFT JOIN with the “database ledger blocks” system
table based on the Block ID. The query calls the
LEDGERHASH function to compute the hash of each
block from the system table and checks for cases where
a) the hash of the digest does not match the computed
hash for the block or b) there are digests representing a
block that is not present in the ledger.

2) Using the LAG function of SQL Server that allows
accessing the previous row of a dataset, we scan the
“database ledger blocks” system table ordered by the
Block ID. This enables us to access each block together
with its previous block. We then use the LEDGERHASH
function to compute the hash of the previous block and
check whether the computed hash matches what is
recorded in the current block as is expected for our
Blockchain data structure.

3) Using the LEDGERHASH and MERKLETREEAGG
functions, we scan the “database ledger transactions”
system table, compute the hash of every transaction and
then the Merkle Tree root for all transactions belonging
to each block (GROUP BY the Block ID), ordered by their
ordinal within the block. We then perform an OUTER
JOIN of this dataset with the “database ledger blocks”
system table on the Block ID to identify cases where a)
the computed Merkle Tree root for the transactions of a
block does not match what is recorded in the block or b)
there are transactions that belong to a block that is not
present in the system.

4) Similar to the previous query, we use the
LEDGERHASH and MERKLETREEAGG functions to
compute the hash of each row version in a Ledger Table
(and the corresponding History table) and then compute
the Merkle Tree root over these rows for each
transaction (GROUP BY the Transaction ID), ordered by
the sequence number of each row. We then perform an
OUTER JOIN of this dataset with the “database ledger
transactions” system table on the Transaction ID to
identify cases where a) the computed Merkle Tree root
for the row versions updated by this transaction does
not match what is recorded in the transaction entry or
b) there are rows in the Ledger table that belong to a
transaction that is not recorded in the system. This
process is then repeated for every Ledger table in the
database.

5) For each Ledger table and History table, we use the
LEDGERHASH and MERKLETREEAGG functions to
compute the Merkle Tree root of all rows in the table
after ordering them based on the clustered index key or

Row Identifier (in the case of Heaps). We then apply the
same logic to compute the Merkle Root of all rows in
each of their non-clustered indices and check for cases
where the hash computed over the base table does not
match what is computed over the non-clustered index.

Once all data has been verified using these queries, the
verification process confirms that the Ledger view definition for
each Ledger table is valid. This is necessary since the Ledger view
is also a database artifact that could have been tampered with,
leading to incorrect results when users attempt to query the ledger
to detect malicious row modifications.

3.5 Schema Changes
Since the data stored in Ledger tables is designed to be immutable,
schema changes present certain challenges since they
fundamentally affect the data stored in the table. We distinguish
schema changes in two categories: physical and logical. Physical
schema changes refer to operations that affect the physical design
of the database, such as adding or dropping indexes, primary or
foreign keys. Logical schema changes correspond to operations
that logically affect the data stored in a table, such as adding,
dropping or altering a column or a table.
Since the hashes captured in the ledger are computed over the
logical data stored in Ledger tables and are not impacted by the
indexes and keys defined, physical schema changes can easily be
supported in our system. However, logical schema changes can
impact the underlying data of the table and, therefore, require
special handling to guarantee that they do not affect the data that
has been recorded in the ledger. This section describes how SQL
Ledger handles some common logical schema changes.

3.5.1 Adding Columns
Adding a nullable column is probably the most common schema
change as applications evolve over time and need to store
additional data in their tables. SQL Ledger is designed to handle
this operation by ignoring NULL values when computing the hash
of a row version. Based on that, when a nullable column is added,
SQL Ledger will modify the schema of the Ledger and History
tables to include the new column, however, this does not impact
the hashes of existing rows. When the verification process re-
computes these hashes, it will ignore the NULL values for the new
column and compute a hash that matches what was originally
recorded in the ledger.
Although this technique helps us support adding new columns, it
opens a window for an attacker to tamper with the row
information that defines which of the columns contain a NULL
value. This would allow them to modify the way the column
values are interpreted and return a NULL value for a different
column instead. This attack is prevented by including the column
ordinal for all non-NULL columns in our serialization format,
described in Section 3.2, to explicitly define which columns
contain non-NULL values.

3.5.2 Dropping Columns and Tables
Dropping a column or a table is also frequently used as old data
becomes irrelevant or while developers are experimenting with
the schema of their applications. Normally, dropping a

column/table completely erases the underlying data from the
database and is, therefore, fundamentally incompatible with the
ledger functionality that requires data to be immutable. Instead of
deleting the data, SQL Ledger simply renames the objects being
dropped so that they are logically removed from the user schema
but physically remain in the database. Any dropped columns are
also hidden from the Ledger table schema, so that they are
invisible to the user application. However, the data of such
dropped objects remains available for the ledger verification
process, which can still access it based on their object IDs, and
allows users to inspect any historical data through the
corresponding Ledger views.
Despite its usefulness, allowing users to drop an object enables a
class of attacks that could violate the Forward Integrity
guarantees our system provides. An attacker can drop an existing
table and create a new one with the same name but data that has
been tampered with. The verification process will verify both
tables (based on their IDs) but when the users query the table, they
might not realize it is now referring to a different object that could
have been introduced more recently. To mitigate this risk, SQL
Ledger stores the metadata of all Ledger tables and columns in two
updateable Ledger system tables, for tables and columns
respectively, and exposes all operations that have modified this
metadata through the corresponding Ledger views. The integrity
of these tables is verifiable through the regular verification
process and users can query the views to identify when their
tables/columns were created/dropped to decide whether this was
intentional or a potential attack. Figure 6 provides an example of
the Ledger view tracking the operations that created or dropped
various Ledger tables.

Table Name Table ID Operation
Transaction

ID

Customers 1 CREATE 100

Orders 2 CREATE 150

LineItems 3 CREATE 160

MS_DroppedTable_Customers 1 DROP 190

Customers 4 CREATE 190

Figure 6. Ledger system view tracking table operations.

3.5.3 Altering Column Properties
SQL Server allows any properties of a column to be altered: data
type, length, nullability, collation, etc. Any changes that do not
impact the underlying data of a Ledger table, such as changing
nullability, collation for Unicode strings or the length of variable
length columns, are supported without any special handling as
they do not impact the hashes being captured in the ledger.
However, any operations that might affect the format of existing
data, such as changing the data type, are handled by dropping the
existing column, adding it back with the original name and,
finally, re-populating it with the original data, including any
conversion that is required for the type change. The logic to drop
and add the column follows the semantics we presented in the
previous sections.

3.6 Integration with Azure Immutable Blob
Storage

As described in Section 2.4, SQL Ledger automates digest
management by integrating with Azure Immutable Blob Storage
and periodically uploading digests to append-only, immutable
BLOBs that cannot be modified by users or even Microsoft
engineers. During verification, these digests are automatically
downloaded and used to verify the integrity of the database.
In the common case, this process is straightforward and simply
requires accessing a user provided storage account to upload or
download the JSON documents storing the digest information.
However, Azure SQL Database supports certain operations that
allow bringing the database state back to an earlier point in time.
Although these operations move the database state back in time,
which is normally considered an attack for SQL Ledger, it is
important to support them since they are necessary for meeting
the operational requirements of enterprise users. Specifically, our
digest management solution needs to address the following
scenarios:

• Failover across geographic regions.
Replication across geographic regions is asynchronous
for performance reasons and, thus, allows the secondary
database to be slightly behind compared to the primary.
In the event of a geographic failover, any latest data that
has not yet been replicated is lost.

• Restoring the database back to an earlier point in time,
also known as Point in Time Restore [20].
This is an operation frequently used when a mistake
occurs and users need to quickly revert the state of the
database back to an earlier point in time.

In the case of geographic failovers, the replication delay is
bounded and normally remains below one second. Based on that,
SQL Ledger will only issue Database Digests for data that has been
replicated to geographic secondaries to guarantee that digests will
never reference data that might be lost in case of a geographic
failover. This slightly increases the window of vulnerability but,
given that the introduced delay is normally below 1 second and
digests are generated every few seconds, the difference should be
negligible. If replication starts falling further behind, significantly
delaying the digest generation, SQL Ledger will trigger an alert
and eventually stop accepting new requests until the secondaries
are caught up and digests can get successfully generated.
In the case of restore, the database can be restored to any arbitrary
point in time and, therefore, deferring digest generation is not an
option. Instead, when uploading the generated digests to Azure
Storage, we will capture the “create time” of the database that
these digests map to. Every time the database is restored, it is
tagged with a new create time and this technique allows us to
store the digests across different “incarnations” of the database.
SQL Ledger preserves the information regarding when a restore
operation occurred, allowing the verification process to use all the
relevant digests across the various incarnations of the database.
Additionally, users can inspect all digests for different create
times to identify when the database was restored and how far back

it was restored to. Since this data is written in immutable storage,
this information will be protected as well.

3.7 Recovery from Tampering
SQL Ledger cryptographically guarantees Forward Integrity by
leveraging tamper-evident data structures and verifying their
integrity through an asynchronous verification process. Although
this should deter any attackers from attempting to tamper with
the data, which is not even possible through the official system
APIs, a determined adversary can still do so by compromising the
process or modifying the data directly in storage. Such attacks
cannot be prevented in our system but will be detected when the
verification process is executed. If the verification fails, bringing
the database back to a consistent state can be challenging and
depends on the type of data and how soon the attack gets detected.
SQL Ledger does not currently automate this process, however, in
this section, we discuss how users can manually achieve that.
For this discussion, we make the following assumptions:

• Earlier backups of the database are available and have
not been tampered with. These backups can be restored
and verified to be consistent through the ledger
verification process. This allows users to recover to a
consistent state before the tampering occurred.

• Any attack that attempts to “fork” the ledger
Blockchain, by overwriting earlier blocks, is detected
when a digest is generated, following the external
verification process, described in Section 3.3.1, that
confirms that each new digest can be derived from the
previous one. This guarantees that all digests are
correctly generated over a Blockchain that was never
forked.

We then separate the data stored in Ledger tables in two
categories:

1) Data that does not affect how future transactions are
processed, such as the transaction details tracked for
each financial transaction.

2) Data that is used for further transaction processing,
such as the current account balances that define how
much money a customer can withdraw.

When data of the first category is tampered with, this event does
not impact the execution of future transactions which are
correctly written to the ledger, computing the appropriate hashes
and generating valid digests. In this case, users can simply restore
the latest database backup that can be successfully verified and
repair the data of the original database that has been maliciously
modified (as reported by the verification process). All generated
digests will remain valid since the chain was never forked and the
verification process can succeed, proving the database integrity.
When data of the second category is tampered with, future
transactions that use this data for their execution might have also
been compromised. The outcome of these transactions can be
invalid, resulting to an incorrect ledger and generated digests. In
this case, users need to restore the latest backup that can be
successfully verified and then use that as the basis to re-execute
the transactions that occurred after this point in time. This process
can be challenging and, thus, it is critical for the verification

process to be executed frequently to minimize the number of
transactions that need to be reprocessed. Additionally, any
previously generated digests for this period of time need to be
invalidated and any parties that have been using them, such as
partners or auditors, should be made aware of this fork in the
ledger.

4 PERFORMANCE EVALUATION
This section presents experimental results regarding the
performance of SQL Ledger. All our experiments are executed on
a workstation with 4 sockets, 72 cores (Intel® Xeon® Processor
E7-8890, 2.50GHz) and 1TB of RAM. External storage consists of
two 1TB SSDs for data and log respectively.

4.1 User Workload Performance
In our first set of experiments, we evaluate the performance of
SQL Ledger when executing user transactions. SQL Ledger takes
advantage of the optimized transaction processing engine of SQL
Server but it must also preserve historical data in the History
tables and compute the SHA-256 hashes of any modified rows.
Based on that, we measure the overhead introduced by this
additional logic and how it impacts the throughput and latency of
the system.

4.1.1 Throughout
Since the overhead introduced by SQL Ledger is mainly around
row modifications, we evaluate the throughput of the system
using update intensive OLTP workloads. Specifically, we
experiment with a TPC-C-like workload that is extremely update
intensive and should be a worst-case scenario for SQL Ledger, and
a TPC-E-like workload that represents a more common ratio
between reads and writes.
The TPC-C workload simulates an order processing system of a
wholesale supplier that receives and fulfils orders from customers.
In this setting, the supplier would want to establish trust with
their customers by protecting the integrity of the data that tracks
the order details and, especially, the payment and shipping related
information. Based on that, we converted four, out of the nine in
total, TPC-C tables that store order related information to Ledger
tables. These tables are updated multiple times for every order
placed to track the order status.
The TPC-E workload simulates the activity of a stock brokerage
firm that allows their clients to view their account details and
submit stock orders, but also generates reports for the brokerage
firm. Given the financial nature of the scenario, most tables
contain information that must be protected from tampering since
it relates to customer positions and stock orders. Based on that,
we converted all 33 tables into Ledger tables.
Figure 7 presents the difference in throughput between SQL
Ledger and traditional SQL Server for these workloads.
Considering the strong security guarantees that SQL Ledger
provides and the fact that the vast-majority of applications are not
as update intensive as TPC-C, we believe that the performance
degradation should be acceptable for any applications that require
protecting the integrity of their data. As we anticipated, the
overhead introduced by SQL Ledger becomes more noticeable in

the case of TPC-C due to the high frequency of updates. According
to the profile data we collected, inserting the historical data into
the History table accounts for approximately half of the overhead
while the hash generation is responsible for the remainder.

Workload Performance difference
TPC-C -30.6%
TPC-E -6.9%

Figure 7. Throughput of SQL Ledger compared to
traditional SQL Server.

Despite the performance degradation compared to traditional SQL
Server, SQL Ledger was able to scale to the 72 physical cores of
the workstation without running into any bottlenecks and achieve
a throughput above 70K transactions per second (tps) for TPC-C-
like transactions. This is more than 20 times higher than what
state of the art Blockchain systems, like Hyperledger Fabric, can
achieve, even when evaluated using simpler transactions [1].

4.1.2 DML Latency
In this set of experiments, we measure the latency of different
types of DML operations on Ledger and regular SQL Server tables.
Figure 8 demonstrates the latency of single row operations on a
table that has 260-byte wide rows and a varying number of
indices.

Figure 8. DML latency for different types of operations and
number of indices on regular and Ledger tables.

The overhead introduced by SQL Ledger is smallest in the case of
Insert operations since these only compute the SHA-256 hash of
the inserted rows but do not maintain any historical data. This
accounts for ~12μs/row. In the case of Delete operations, SQL
Ledger inserts the deleted rows in the History table and computes
their hash. Τhe History table insertion accounts for an additional
~18μs/row. Finally, Update operations need to compute the hash
of each updated row both before and after the update but also
insert the earlier versions in the History table. Based on that, we
expect an overhead of approximately (2 * 12 + 18) = 42μs/row
which is aligned with the results we see in the diagram
(~40μs/row).
Although the latency overhead is noticeable, our experiments
only measure the cost to locate and update a row and exclude the
cost of committing the transaction that would be dominant and

add approximately 125μs. Based on that, the latency of short
transactions that update a small number of rows before
committing is not significantly impacted. Additionally, the
observed latency is orders of magnitude lower than state of the art
Blockchain systems whose latency is in the order of 100s of ms [1]
due to the decentralized consensus protocols they depend on.

4.2 Ledger Verification Performance
The Ledger verification process is a resource intensive operation
that must verify the integrity of the Database Ledger and then
scan all rows of Ledger and History tables to recompute their
SHA-256 hashes and compare them with the corresponding
digests stored in the Database Ledger. In this section, we evaluate
the performance of the verification process for different numbers
of transactions. In our experiments, each transaction updates five
rows in a Ledger table. Every row is 260 bytes wide. Figure 9
presents the verification times for different numbers of
transactions.

Figure 9. Ledger verification times for different numbers
of transactions.

As anticipated, the verification time is proportional to the number
of transactions and row versions that must be processed.
Although the verification time becomes high when the volume of
data gets large, it still allows the process to be executed daily, if
necessary, even for databases that store TBs of data. Finally,
despite its cost, the verification process can be executed in the
background without impacting the user workload or even
offloaded to a separate node, such as a secondary replica or a
database copy [21] to avoid consuming resources from the
production instance.

5 WORK IN PROGESS
In this section, we discuss our ongoing work on future
enhancements of SQL Ledger. The additional functionality
intends to improve the security guarantees of the system by
supporting non-repudiation and allow users to manage the size of
their database by truncating old ledger data that is no longer
needed.

5.1 Non-repudiation
SQL Ledger already supports a limited form of non-repudiation as
the organization hosting the data cannot dispute the outcome of

previously executed transactions without tampering with the
ledger, which is detectable. However, if the ledger is tampered
with or destroyed, there is no way for a user to prove that a
specific transaction, such as a large money deposit, occurred. A
naïve approach to address that would be to cryptographically sign
every transaction with a public/private key pair and return this
signature to the user executing the transaction. This is not a viable
option, though, due to the high cost of computing asymmetric
signatures. Instead, by leveraging the Merkle Tree structure of the
Database Ledger, SQL Ledger can generate a “receipt” for each
transaction, containing a) the Merkle Proof for the transaction,
which proves that it is part of the block, and b) the signature of
the tree root for the corresponding block. This allows us to
generate a receipt for each of the 100K transactions in a block with
only one signing operation.

5.2 Ledger Truncation
Since SQL Ledger maintains all historical data and transaction
information, the database size will grow over time. Although
Azure SQL Database supports scaling database storage to 10s of
TBs [2], users will still prefer to delete unnecessary data to reduce
cost. Additionally, compliance regulations require storing
historical data for a bounded amount of time and not perpetually.
Based on that, our goal is to support truncating old ledger and
historical data that is no longer needed. Historical data is easy to
truncate because no other data elements reference it. Old
Database Ledger blocks and transactions, however, can still
maintain digests representing the current data of a Ledger table,
if this has not been recently updated. To allow deleting old
transaction and blocks, the truncation operation will first trigger
the verification process to guarantee that any current data is
consistent and then perform a dummy update on any Ledger table
data that references a transaction that is going to be truncated.
This process effectively moves the digests of this data into new
transactions and blocks so that old ones can be safely truncated.
Finally, a record indicating that a ledger truncation occurred will
be recorded into the ledger to guarantee that this operation is
audited.

6 RELATED WORK
In the research community, there has been a rich body of work [3,
5, 6, 10, 13, 15, 23, 26, 27, 29, 30] on technologies that support
verifying the integrity of data hosted in untrusted environments.
These systems can be categorized based: a) whether they depend
on Trusted Hardware, such as Intel SGX enclaves [17], b) whether
they support updates or only queries and c) whether they verify
the completeness and correctness of query results. Despite their
technical merit, these solutions did not get enough traction in the
industry to become part of commercial data management
solutions.
With the launch of Bitcoin, and largely due to its financial success,
we see renewed interest in the space of data integrity and a wide
range of Blockchain and Distributed Ledger Technology (DLT)
systems [1, 8, 9, 11, 12, 24] being released over the last years.
Although these technologies can also be used to protect the

integrity of centralized data, their decentralized design makes
them complex to manage and severely impacts their performance,
which is orders of magnitude lower compared to production
RDBMSs. Amazon QLDB [4] and Oracle Blockchain tables [25]
attempt to bridge the gap between distributed ledgers and
databases, by offering a centralized solution that leverages the
cryptographic data structures of Blockchains. Similar to SQL
Ledger, QLDB stores data in a Blockchain and allows extracting
digests to verify its integrity. However, verification occurs at the
document level and does not provide a mechanism to verify the
whole dataset that would be necessary to guarantee query
correctness. Additionally, QLDB is a document store and does not
provide the rich capabilities of an RDBMS. Oracle Blockchain
tables, on the other hand, are fully integrated in the Oracle
database, but only support insertions and, more importantly, do
not expose digests outside of the database. Based on that, users
must trust the RDBMS which is what these solutions intend to
avoid in the first place. Finally, systems like BigchainDB [16] and
ChainifyDB [28] maintain the decentralized architecture of DLTs,
that enables multi-party computation, but integrate with database
systems to leverage the rich data model and high performance of
relational databases.

7 ACKNOWLEDGMENTS
We would like to thank all team members for their contributions
to the project. Delivering SQL Ledger would not have been
possible without their commitment and hard work. We would also
like to thank the Redmond and Cambridge Microsoft Research
teams and, especially, Arvind Arasu, Miguel Castro, Sylvan
Clebsch, Manuel Costa, Antoine Delignat-Lavaud, Cedric Fournet,
Donald Kossmann and Ravi Ramamurthy for their collaboration
and feedback on our design. Finally, we would like to thank our
leadership team for sponsoring a project in the upcoming space of
data integrity and continuing to invest in our work in this area.

8 REFERENCES
[1] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De

Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, et al.
Hyperledger fabric: a distributed operating system for permissioned
blockchains. In Proceedings of the Thirteenth EuroSys Conference, page
30. ACM, 2018.

[2] P. Antonopoulos, A. Budovski, C. Diaconu, A. Hernandez Saenz, J. Hu,
H. Kodavalla, D. Kossmann, S. Lingam, U. Farooq Minhas, N. Prakash,
V. Purohit, H. Qu, C. Sreenivas Ravella, K. Reisteter, S. Shrotri, D. Tang,
and V. Wakade. 2019. Socrates: The New SQL Server in the Cloud. In
Proceedings of the 2019 International Conference on Management of
Data (SIGMOD '19). Association for Computing Machinery, New York,
NY, USA, 1743–1756. DOI:https://doi.org/10.1145/3299869.3314047

[3] A. Arasu, K. Eguro, R. Kaushik, D. Kossmann, P. Meng, V. Pandey, and
R. Ramamurthy. 2017. Concerto: A High Concurrency Key-Value Store
with Integrity. In Proceedings of the 2017 ACM International
Conference on Management of Data (SIGMOD '17). Association for
Computing Machinery, New York, NY, USA, 251–266.

[4] AWS. Amazon Quantum Ledger Database.
https://aws.amazon.com/qldb.

[5] S. Bajaj and R. Sion. Trusteddb: A trusted hardware-based database with
privacy and data confidentiality. IEEE Trans. Knowl. Data Eng.,
26(3):752–765, 2014.

[6] A. Baumann, M. Peinado, and G. C. Hunt. Shielding applications from
an untrusted cloud with Haven. In OSDI, pages 267–283, 2014.

[7] M. Bellare and B. Yee. Forward Integrity for Secure Audit Logs. Tech.
rep. Computer Science and Engineering Department, University of
California at San Diego, 1997.

https://aws.amazon.com/qldb

[8] ConsenSys. Quorum. https://consensys.net/quorum/
[9] Corda. https://www.corda.net.
[10] P. T. Devanbu, M. Gertz, C. U. Martel, and S. G. Stubblebine. Authentic

data publication over the internet. Journal of Computer Security,
11(3):291–314, 2003.

[11] Ethereum. https://www.ethereum.org.
[12] Everledger. https://www.everledger.io
[13] R. Jain and S. Prabhakar. Trustworthy data from untrusted databases. In

ICDE, pages 529–540, 2013.
[14] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals Problem.

ACM Transactions on Programming Languages and Systems, 4(3), 1982.
[15] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin. Dynamic

authenticated index structures for outsourced databases. In SIGMOD,
pages 121–132, 2006.

[16] T. McConaghy, R. Marques, A. Muller, D. De Jonghe, T. McConaghy, G.
McMullen, R. Henderson, S. Bellemare, and A. Granzotto. Bigchaindb: a
scalable blockchain database. white paper, BigChainDB, 2016.

[17] F. McKeen, I. Alexandrovich, A. Berenzon, et al. Innovative instructions
and software model for isolated execution. In HASP, 2013.

[18] R. C. Merkle. A digital signature based on a conventional encryption
function. In CRYPTO, pages 369–378, 1987.

[19] Microsoft. Azure Immutable Blob Storage.
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blob-
immutable-storage

[20] Microsoft. Azure SQL Database Point in Time Restore.
https://azure.microsoft.com/en-us/blog/azure-sql-database-point-in-
time-restore/

[21] Microsoft. Copy a transactionally consistent copy of a database in Azure
SQL Database. https://docs.microsoft.com/en-us/azure/azure-
sql/database/database-copy

[22] C. Mohan, D. J. Haderle, B.G. Lindsay, H. Pirahesh, P. M. Schwarz.
ARIES: A Transaction Recovery Method Supporting Fine-Granularity
Locking and Partial Rollbacks Using Write-Ahead Logging. ACM TODS,
17(1):94–162, 1992.

[23] E. Mykletun, M. Narasimha, and G. Tsudik. Authentication and integrity
in outsourced databases. In Proceedings of the Network and Distributed
System Security Symposium (NDSS), 2004.

[24] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008
[25] Oracle. Oracle Blockchain Table

https://docs.oracle.com/en/database/oracle/oracle-
database/20/newft/oracle-blockchain-table.html

[26] H. Pang, A. Jain, K. Ramamritham, and K. Tan. Verifying completeness
of relational query results in data publishing. In SIGMOD, pages 407–
418, 2005.

[27] H. Pang and K. Tan. Authenticating query results in edge computing. In
ICDE, pages 560–571, 2004.

[28] F. M. Schuhknecht, A. Sharma, J. Dittrich, and D. Agrawal. ChainifyDB:
How to Blockchainify any Data Management System. 2019.

[29] S. Singh and S. Prabhakar. Ensuring correctness over untrusted private
database. In EDBT, pages 476–486, 2008

[30] Y. Zhang, J. Katz, and C. Papamanthou. IntegriDB: Verifiable SQL for
outsourced databases. In CCS, pages 1480–1491, 2015.

https://consensys.net/quorum/
https://www.corda.net/
https://www.ethereum.org/
https://www.everledger.io/
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blob-immutable-storage
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blob-immutable-storage
https://azure.microsoft.com/en-us/blog/azure-sql-database-point-in-time-restore/
https://azure.microsoft.com/en-us/blog/azure-sql-database-point-in-time-restore/
https://docs.microsoft.com/en-us/azure/azure-sql/database/database-copy
https://docs.microsoft.com/en-us/azure/azure-sql/database/database-copy
https://docs.oracle.com/en/database/oracle/oracle-database/20/newft/oracle-blockchain-table.html
https://docs.oracle.com/en/database/oracle/oracle-database/20/newft/oracle-blockchain-table.html

