노동력 통계: 연령, 성별, 인종 및 민족 집단별 노동력, 노동력 인구 비율 및 생산 가능 인구입니다. (미국)
이 데이터 세트는 BLS(미국 노동 통계국)에서 게시한 현재 고용 통계 - CES(미국) 데이터에서 제공됩니다. 이 데이터 세트 사용과 관련된 사용 약관은 연결 및 저작권 정보 및 중요한 웹 사이트 고지 사항을 검토하세요.
스토리지 위치
이 데이터 세트는 미국 동부 Azure 지역에 저장됩니다. 선호도를 위해 미국 동부에 컴퓨팅 리소스를 할당하는 것이 좋습니다.
관련 데이터 세트
알림
Microsoft는 Azure Open Datasets를 “있는 그대로” 제공합니다. Microsoft는 귀하의 데이터 세트 사용과 관련하여 어떠한 명시적이거나 묵시적인 보증, 보장 또는 조건을 제공하지 않습니다. 귀하가 거주하는 지역의 법규가 허용하는 범위 내에서 Microsoft는 귀하의 데이터 세트 사용으로 인해 발생하는 일체의 직접적, 결과적, 특별, 간접적, 부수적 또는 징벌적 손해 또는 손실을 비롯한 모든 손해 또는 손실에 대한 모든 책임을 부인합니다.
이 데이터 세트는 Microsoft가 원본 데이터를 받은 원래 사용 약관에 따라 제공됩니다. 데이터 세트에는 Microsoft가 제공한 데이터가 포함될 수 있습니다.
Access
Available in | When to use |
---|---|
Azure Notebooks | Quickly explore the dataset with Jupyter notebooks hosted on Azure or your local machine. |
Azure Databricks | Use this when you need the scale of an Azure managed Spark cluster to process the dataset. |
Azure Synapse | Use this when you need the scale of an Azure managed Spark cluster to process the dataset. |
Preview
series_id | year | period | value | footnote_codes | lfst_code | periodicity_code | series_title | absn_code | activity_code | ages_code | cert_code | class_code | duration_code | education_code | entr_code | expr_code | hheader_code | hour_code | indy_code | jdes_code | look_code | mari_code | mjhs_code | occupation_code | orig_code | pcts_code | race_code | rjnw_code | rnlf_code | rwns_code | seek_code | sexs_code | tdat_code | vets_code | wkst_code | born_code | chld_code | disa_code | seasonal |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LNS11000031Q | 1972 | Q01 | 4300 | nan | 10 | Q | (Seas) Civilian Labor Force Level - 20 yrs. & over, Black or African American Men | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | S |
LNS11000031Q | 1972 | Q02 | 4370 | nan | 10 | Q | (Seas) Civilian Labor Force Level - 20 yrs. & over, Black or African American Men | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | S |
LNS11000031Q | 1972 | Q03 | 4397 | nan | 10 | Q | (Seas) Civilian Labor Force Level - 20 yrs. & over, Black or African American Men | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | S |
LNS11000031Q | 1972 | Q04 | 4381 | nan | 10 | Q | (Seas) Civilian Labor Force Level - 20 yrs. & over, Black or African American Men | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | S |
LNS11000031Q | 1973 | Q01 | 4408 | nan | 10 | Q | (Seas) Civilian Labor Force Level - 20 yrs. & over, Black or African American Men | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | S |
LNS11000031Q | 1973 | Q02 | 4445 | nan | 10 | Q | (Seas) Civilian Labor Force Level - 20 yrs. & over, Black or African American Men | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | S |
LNS11000031Q | 1973 | Q03 | 4477 | nan | 10 | Q | (Seas) Civilian Labor Force Level - 20 yrs. & over, Black or African American Men | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | S |
LNS11000031Q | 1973 | Q04 | 4523 | nan | 10 | Q | (Seas) Civilian Labor Force Level - 20 yrs. & over, Black or African American Men | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | S |
LNS11000031Q | 1974 | Q01 | 4574 | nan | 10 | Q | (Seas) Civilian Labor Force Level - 20 yrs. & over, Black or African American Men | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | S |
LNS11000031Q | 1974 | Q02 | 4538 | nan | 10 | Q | (Seas) Civilian Labor Force Level - 20 yrs. & over, Black or African American Men | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | S |
Name | Data type | Unique | Values (sample) | Description |
---|---|---|---|---|
absn_code | int | 4 | 3 4 |
|
activity_code | int | 7 | 8 3 |
|
ages_code | int | 35 | 10 17 |
|
born_code | int | 3 | 2 1 |
|
cert_code | int | 5 | 2 4 |
|
chld_code | int | 6 | 4 1 |
|
class_code | int | 14 | 2 1 |
|
disa_code | int | 3 | 1 2 |
|
duration_code | int | 11 | 18 6 |
|
education_code | int | 9 | 40 19 |
|
entr_code | int | 3 | 1 2 |
|
expr_code | int | 3 | 1 2 |
|
footnote_codes | string | 7 | nan 4.0 |
|
hheader_code | int | 2 | 1 | |
hour_code | int | 13 | 1 16 |
|
indy_code | int | 323 | 368 169 |
|
jdes_code | int | 3 | 1 2 |
|
lfst_code | int | 33 | 20 30 |
|
look_code | int | 7 | 1 6 |
|
mari_code | int | 5 | 2 1 |
|
mjhs_code | int | 6 | 1 2 |
|
occupation_code | int | 566 | 8999 4999 |
|
orig_code | int | 14 | 1 2 |
|
pcts_code | int | 23 | 5 8 |
|
period | string | 18 | M07 M06 |
|
periodicity_code | string | 3 | M Q |
|
race_code | int | 14 | 1 3 |
|
rjnw_code | int | 9 | 1 3 |
|
rnlf_code | int | 11 | 64 63 |
|
rwns_code | int | 17 | 10 1 |
|
seasonal | string | 2 | U S |
|
seek_code | int | 2 | 1 | |
series_id | string | 45,478 | LNU02035121 LNU03000000 |
|
series_title | string | 34,264 | (Unadj) Labor Force Participation Rate (Unadj) Employment-Population Ratio |
|
sexs_code | int | 3 | 1 2 |
|
tdat_code | int | 6 | 1 4 |
|
value | float | 121,742 | 3.0 4.0 |
|
vets_code | int | 8 | 25 1 |
|
wkst_code | int | 7 | 1 4 |
|
year | int | 80 | 2018 2017 |
Azure Notebooks
# This is a package in preview.
from azureml.opendatasets import UsLaborLFS
labor = UsLaborLFS()
labor_df = labor.to_pandas_dataframe()
labor_df.info()
# Pip install packages
import os, sys
!{sys.executable} -m pip install azure-storage-blob
!{sys.executable} -m pip install pyarrow
!{sys.executable} -m pip install pandas
# Azure storage access info
azure_storage_account_name = "azureopendatastorage"
azure_storage_sas_token = r""
container_name = "laborstatisticscontainer"
folder_name = "lfs/"
from azure.storage.blob import BlockBlobServicefrom azure.storage.blob import BlobServiceClient, BlobClient, ContainerClient
if azure_storage_account_name is None or azure_storage_sas_token is None:
raise Exception(
"Provide your specific name and key for your Azure Storage account--see the Prerequisites section earlier.")
print('Looking for the first parquet under the folder ' +
folder_name + ' in container "' + container_name + '"...')
container_url = f"https://{azure_storage_account_name}.blob.core.windows.net/"
blob_service_client = BlobServiceClient(
container_url, azure_storage_sas_token if azure_storage_sas_token else None)
container_client = blob_service_client.get_container_client(container_name)
blobs = container_client.list_blobs(folder_name)
sorted_blobs = sorted(list(blobs), key=lambda e: e.name, reverse=True)
targetBlobName = ''
for blob in sorted_blobs:
if blob.name.startswith(folder_name) and blob.name.endswith('.parquet'):
targetBlobName = blob.name
break
print('Target blob to download: ' + targetBlobName)
_, filename = os.path.split(targetBlobName)
blob_client = container_client.get_blob_client(targetBlobName)
with open(filename, 'wb') as local_file:
blob_client.download_blob().download_to_stream(local_file)
# Read the parquet file into Pandas data frame
import pandas as pd
print('Reading the parquet file into Pandas data frame')
df = pd.read_parquet(filename)
# you can add your filter at below
print('Loaded as a Pandas data frame: ')
df
Azure Databricks
# This is a package in preview.
from azureml.opendatasets import UsLaborLFS
labor = UsLaborLFS()
labor_df = labor.to_spark_dataframe()
display(labor_df.limit(5))
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "laborstatisticscontainer"
blob_relative_path = "lfs/"
blob_sas_token = r""
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
blob_sas_token)
print('Remote blob path: ' + wasbs_path)
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))
Azure Synapse
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "laborstatisticscontainer"
blob_relative_path = "lfs/"
blob_sas_token = r""
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
blob_sas_token)
print('Remote blob path: ' + wasbs_path)
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))