탐색 건너뛰기

US Population by ZIP Code

US Census Population Decennial Zip ZCTA5

2010 Decennial Census에서 제공된 각 미국 우편 번호에 대한 성별 및 인종별 미국 인구입니다.

이 데이터 세트는 미국 인구 조사국의 10년 단위 인구 조사 데이터 세트 API에서 제공됩니다. 이 데이터 세트 사용과 관련된 사용 약관은 서비스 약관정책 및 고지 사항을 검토하세요.

볼륨 및 보존

이 데이터 세트는 Parquet 형식으로 저장되며 2010년에 대한 데이터를 포함합니다.

스토리지 위치

이 데이터 세트는 미국 동부 Azure 지역에 저장됩니다. 선호도를 위해 미국 동부에 컴퓨팅 리소스를 할당하는 것이 좋습니다.

관련 데이터 세트

알림

Microsoft는 Azure Open Datasets를 “있는 그대로” 제공합니다. Microsoft는 귀하의 데이터 세트 사용과 관련하여 어떠한 명시적이거나 묵시적인 보증, 보장 또는 조건을 제공하지 않습니다. 귀하가 거주하는 지역의 법규가 허용하는 범위 내에서 Microsoft는 귀하의 데이터 세트 사용으로 인해 발생하는 일체의 직접적, 결과적, 특별, 간접적, 부수적 또는 징벌적 손해 또는 손실을 비롯한 모든 손해 또는 손실에 대한 모든 책임을 부인합니다.

이 데이터 세트는 Microsoft가 원본 데이터를 받은 원래 사용 약관에 따라 제공됩니다. 데이터 세트에는 Microsoft가 제공한 데이터가 포함될 수 있습니다.

Access

Available inWhen to use
Azure Notebooks

Quickly explore the dataset with Jupyter notebooks hosted on Azure or your local machine.

Azure Databricks

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Azure Synapse

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Preview

decennialTime zipCode population race sex minAge maxAge year
2010 77477 265 WHITE ALONE Female 15 17 2010
2010 77477 107 SOME OTHER RACE ALONE Female 15 17 2010
2010 77477 12 SOME OTHER RACE ALONE Female 65 66 2010
2010 77477 101 ASIAN ALONE Female 60 61 2010
2010 77477 221 ASIAN ALONE Male 10 14 2010
2010 77478 256 WHITE ALONE Female 15 17 2010
2010 77478 17 SOME OTHER RACE ALONE Female 15 17 2010
2010 77478 3 SOME OTHER RACE ALONE Female 65 66 2010
2010 77478 129 ASIAN ALONE Female 60 61 2010
2010 77478 296 ASIAN ALONE Male 10 14 2010
Name Data type Unique Values (sample) Description
decennialTime string 1 2010

10년 단위 인구 조사가 수행된 시간(예: 2010, 2000)입니다.

maxAge int 23 14
20

연령 범위의 최댓값입니다. null일 경우 모든 연령을 포함하거나 연령 범위에 상한값이 없습니다(예: 연령 > 85).

minAge int 23 67
22

연령 범위의 최솟값입니다. null일 경우 모든 연령을 포함합니다.

population int 29,274 1
2

이 부문의 인구입니다.

race string 8 NATIVE HAWAIIAN AND OTHER PACIFIC ISLANDER ALONE
WHITE ALONE

인구 조사 데이터의 인종 범주입니다. null일 경우 모든 인종을 포함합니다.

sex string 3 Female
Male

남성 또는 여성입니다. null일 경우 두 성별을 모두 포함합니다.

year int 1 2010

10년 단위 시간의 연도(정수)입니다.

zipCode string 33,120 12545
08720

5자리 ZIP Code Tabulation Area(ZCTA5)입니다.

Select your preferred service:

Azure Notebooks

Azure Databricks

Azure Synapse

Azure Notebooks

Package: Language: Python Python
In [1]:
# This is a package in preview.
from azureml.opendatasets import UsPopulationZip

population = UsPopulationZip()
population_df = population.to_pandas_dataframe()
ActivityStarted, to_pandas_dataframe
ActivityStarted, to_pandas_dataframe_in_worker
Looking for parquet files...
Reading them into Pandas dataframe...
Reading release/us_population_zip/year=2010/part-00178-tid-5434563040420806442-84b5e4ab-8ab1-4e28-beb1-81caf32ca312-1919656.c000.snappy.parquet under container censusdatacontainer
Done.
ActivityCompleted: Activity=to_pandas_dataframe_in_worker, HowEnded=Success, Duration=34526.07 [ms]
ActivityCompleted: Activity=to_pandas_dataframe, HowEnded=Success, Duration=34538.26 [ms]
In [2]:
population_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 19077120 entries, 0 to 19077119
Data columns (total 7 columns):
decennialTime    object
zipCode          object
population       int32
race             object
sex              object
minAge           float64
maxAge           float64
dtypes: float64(2), int32(1), object(4)
memory usage: 946.1+ MB
In [1]:
# Pip install packages
import os, sys

!{sys.executable} -m pip install azure-storage-blob
!{sys.executable} -m pip install pyarrow
!{sys.executable} -m pip install pandas
In [2]:
# Azure storage access info
azure_storage_account_name = "azureopendatastorage"
azure_storage_sas_token = r""
container_name = "censusdatacontainer"
folder_name = "release/us_population_zip/"
In [3]:
from azure.storage.blob import BlockBlobServicefrom azure.storage.blob import BlobServiceClient, BlobClient, ContainerClient

if azure_storage_account_name is None or azure_storage_sas_token is None:
    raise Exception(
        "Provide your specific name and key for your Azure Storage account--see the Prerequisites section earlier.")

print('Looking for the first parquet under the folder ' +
      folder_name + ' in container "' + container_name + '"...')
container_url = f"https://{azure_storage_account_name}.blob.core.windows.net/"
blob_service_client = BlobServiceClient(
    container_url, azure_storage_sas_token if azure_storage_sas_token else None)

container_client = blob_service_client.get_container_client(container_name)
blobs = container_client.list_blobs(folder_name)
sorted_blobs = sorted(list(blobs), key=lambda e: e.name, reverse=True)
targetBlobName = ''
for blob in sorted_blobs:
    if blob.name.startswith(folder_name) and blob.name.endswith('.parquet'):
        targetBlobName = blob.name
        break

print('Target blob to download: ' + targetBlobName)
_, filename = os.path.split(targetBlobName)
blob_client = container_client.get_blob_client(targetBlobName)
with open(filename, 'wb') as local_file:
    blob_client.download_blob().download_to_stream(local_file)
In [4]:
# Read the parquet file into Pandas data frame
import pandas as pd

print('Reading the parquet file into Pandas data frame')
df = pd.read_parquet(filename)
In [5]:
# you can add your filter at below
print('Loaded as a Pandas data frame: ')
df
In [6]:
 

Azure Databricks

Package: Language: Python Python
In [1]:
# This is a package in preview.
from azureml.opendatasets import UsPopulationZip

population = UsPopulationZip()
population_df = population.to_spark_dataframe()
ActivityStarted, to_spark_dataframe ActivityStarted, to_spark_dataframe_in_worker ActivityCompleted: Activity=to_spark_dataframe_in_worker, HowEnded=Success, Duration=4108.82 [ms] ActivityCompleted: Activity=to_spark_dataframe, HowEnded=Success, Duration=4111.16 [ms]
In [2]:
display(population_df.limit(5))
decennialTimezipCodepopulationracesexminAgemaxAgeyear
201077477265WHITE ALONEFemale15172010
201077477107SOME OTHER RACE ALONEFemale15172010
20107747712SOME OTHER RACE ALONEFemale65662010
201077477101ASIAN ALONEFemale60612010
201077477221ASIAN ALONEMale10142010
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "censusdatacontainer"
blob_relative_path = "release/us_population_zip/"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))

Azure Synapse

Package: Language: Python Python
In [41]:
# This is a package in preview.
from azureml.opendatasets import UsPopulationZip

population = UsPopulationZip()
population_df = population.to_spark_dataframe()
In [42]:
# Display top 5 rows
display(population_df.limit(5))
Out[42]:
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "censusdatacontainer"
blob_relative_path = "release/us_population_zip/"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))