Azure 빠른 시작 템플릿은 현재 영어로 제공됩니다.
This template creates a tabular dataset from relative path in datastore in Azure Machine Learning workspace.
이 Azure Resource Manager 템플릿은 Microsoft가 아니라 커뮤니티 구성원에 의해 만들어졌습니다. 각 Resource Manager 템플릿은 Microsoft가 아닌 해당 소유자의 사용권 계약에 의거하여 사용이 허가됩니다. Microsoft는 커뮤니티 구성원에 의해 제공 및 라이선스가 부여된 Resource Manager 템플릿에 대해 책임이 없으며, 보안, 호환성 또는 성능을 검사하지 않습니다. 커뮤니티 Resource Manager 템플릿은 Microsoft 지원 프로그램 또는 서비스에서 지원되지 않고, 어떠한 보증도 없이 있는 그대로 제공됩니다.
매개 변수
매개 변수 이름 | 설명 |
---|---|
workspaceName | Specifies the name of the Azure Machine Learning workspace which will hold this datastore target. |
datasetName | The name of the dataset. |
datasetDescription | Optional : The description for the dataset. |
datastoreName | The datastore name. |
relativePath | Path within the datastore |
sourceType | Data source type |
separator | Optional: The separator used to split columns for 'delimited_files' sourceType, default to ',' for 'delimited_files' |
header | Optional : Header type. Defaults to 'all_files_have_same_headers' |
partitionFormat | Optional : The partition information of each path will be extracted into columns based on the specified format. Format part '{column_name}' creates string column, and '{column_name:yyyy/MM/dd/HH/mm/ss}' creates datetime column, where 'yyyy', 'MM', 'dd', 'HH', 'mm' and 'ss' are used to extract year, month, day, hour, minute and second for the datetime type. The format should start from the position of first partition key until the end of file path. For example, given the path '../USA/2019/01/01/data.parquet' where the partition is by country/region and time, partition_format='/{CountryOrRegion}/{PartitionDate:yyyy/MM/dd}/data.csv' creates a string column'CountryOrRegion' with the value 'USA' and a datetime column 'PartitionDate' with the value '2019-01-01 |
fineGrainTimestamp | Optional : Column name to be used as FineGrainTimestamp |
coarseGrainTimestamp | Optional : Column name to be used as CoarseGrainTimestamp. Can only be used if 'fineGrainTimestamp' is specified and cannot be same as 'fineGrainTimestamp'. |
tags | Optional : Provide JSON object with 'key,value' pairs to add as tags on dataset. Example- {"sampleTag1": "tagValue1", "sampleTag2": "tagValue2"} |
skipValidation | Optional : Skip validation that ensures data can be loaded from the dataset before registration. |
includePath | Optional : Boolean to keep path information as column in the dataset. Defaults to False. This is useful when reading multiple files, and want to know which file a particular record originated from, or to keep useful information in file path. |
location | The location of the Azure Machine Learning Workspace. |
템플릿 사용
PowerShell
New-AzResourceGroup -Name <resource-group-name> -Location <resource-group-location> #use this command when you need to create a new resource group for your deploymentAzure PowerShell 설치 및 구성
New-AzResourceGroupDeployment -ResourceGroupName <resource-group-name> -TemplateUri https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/quickstarts/microsoft.machinelearningservices/machine-learning-dataset-create-tabular-from-relative-path/azuredeploy.json
명령줄
az group create --name <resource-group-name> --location <resource-group-location> #use this command when you need to create a new resource group for your deploymentAzure 크로스 플랫폼 명령줄 인터페이스 설치 및 구성
az group deployment create --resource-group <my-resource-group> --template-uri https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/quickstarts/microsoft.machinelearningservices/machine-learning-dataset-create-tabular-from-relative-path/azuredeploy.json