ナビゲーションをスキップする

US Consumer Price Index

labor statistics cpi

消費者物価指数 (CPI) は、都市の消費者が商品やサービスを実際に購入する際に支払う価格の経時的な平均的変動を測定するものです。

このデータセットの詳細情報が含まれた https://download.bls.gov/pub/time.series/cu/cu.txt README ファイルは、データセットの元の場所で入手できます。

このデータセットは、米国労働統計局 (BLS) によって公開されている Consumer Price Index (消費者物価指数) のデータから生成されています。 このデータセットの使用に関する諸条件については、「Linking and Copyright Information (リンクおよび著作権情報)」と「Important Web Site Notices (Web サイトに関する重要な通知)」を確認してください。

保存先

このデータセットは、米国東部 Azure リージョンに保存されています。 アフィニティのために、米国東部でコンピューティング リソースを割り当てることをお勧めします。

関連データセット

通知

Microsoft は、Azure オープン データセットを “現状有姿” で提供します。 Microsoft は、データセットの使用に関して、明示または黙示を問わず、いかなる保証も行わないものとし、条件を定めることもありません。 現地の法律の下で認められている範囲内で、Microsoft は、データセットの使用に起因する、直接的、派生的、特別、間接的、偶発的、または懲罰的なものを含めたいかなる損害または損失に対しても一切の責任を負わないものとします。

このデータセットは、Microsoft がソース データを受け取った元の条件に基づいて提供されます。 データセットには、Microsoft が提供するデータが含まれている場合があります。

Access

Available inWhen to use
Azure Notebooks

Quickly explore the dataset with Jupyter notebooks hosted on Azure or your local machine.

Azure Databricks

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Azure Synapse

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Preview

area_code item_code series_id year period value footnote_codes seasonal periodicity_code series_title item_name area_name
S49E SEHF01 CUURS49ESEHF01 2017 M12 279.974 nan U R Electricity in San Diego-Carlsbad, CA, all urban consumers, not seasonally adjusted Electricity San Diego-Carlsbad, CA
S49E SEHF01 CUURS49ESEHF01 2017 M12 279.974 nan U R Electricity in San Diego-Carlsbad, CA, all urban consumers, not seasonally adjusted Electricity San Diego-Carlsbad, CA
S49E SEHF01 CUURS49ESEHF01 2017 M12 279.974 nan U R Electricity in San Diego-Carlsbad, CA, all urban consumers, not seasonally adjusted Electricity San Diego-Carlsbad, CA
S49E SEHF01 CUURS49ESEHF01 2017 M12 279.974 nan U R Electricity in San Diego-Carlsbad, CA, all urban consumers, not seasonally adjusted Electricity San Diego-Carlsbad, CA
S49E SEHF01 CUURS49ESEHF01 2017 M12 279.974 nan U R Electricity in San Diego-Carlsbad, CA, all urban consumers, not seasonally adjusted Electricity San Diego-Carlsbad, CA
S49E SEHF01 CUURS49ESEHF01 2017 M12 279.974 nan U R Electricity in San Diego-Carlsbad, CA, all urban consumers, not seasonally adjusted Electricity San Diego-Carlsbad, CA
S49E SEHF01 CUURS49ESEHF01 2018 M01 284.456 nan U R Electricity in San Diego-Carlsbad, CA, all urban consumers, not seasonally adjusted Electricity San Diego-Carlsbad, CA
S49E SEHF01 CUURS49ESEHF01 2018 M01 284.456 nan U R Electricity in San Diego-Carlsbad, CA, all urban consumers, not seasonally adjusted Electricity San Diego-Carlsbad, CA
S49E SEHF01 CUURS49ESEHF01 2018 M01 284.456 nan U R Electricity in San Diego-Carlsbad, CA, all urban consumers, not seasonally adjusted Electricity San Diego-Carlsbad, CA
S49E SEHF01 CUURS49ESEHF01 2018 M01 284.456 nan U R Electricity in San Diego-Carlsbad, CA, all urban consumers, not seasonally adjusted Electricity San Diego-Carlsbad, CA
Name Data type Unique Values (sample) Description
area_code string 70 0000
0300

特定の地域の識別に使用される一意のコード。 すべての地域コードはこちら: http://download.bls.gov/pub/time.series/cu/cu.area

area_name string 69 U.S. city average
South

特定の地域の名前。 すべての地域名やコードについては、 https://download.bls.gov/pub/time.series/cu/cu.area をご覧ください。

footnote_codes string 3 nan
U

データ系列の脚注を示します。 ほとんどの値が null です。

item_code string 515 SA0E
SAF11

データ観測の対象となる品目を示します。 すべての品目名とコードについては、 https://download.bls.gov/pub/time.series/cu/cu.item をご覧ください。

item_name string 515 Energy
Food at home

品目のフル ネーム。 品目名とコードについては、 https://download.bls.gov/pub/time.series/cu/cu.txt をご覧ください。

period string 16 S01
S02

データが観測される期間を示します。 形式:M01-M13 または S01-S03 (M = 毎月、M13 = 年平均、S = 半年ごと)。 例:M06 = June。 期間名とコードについては、 https://download.bls.gov/pub/time.series/cu/cu.period をご覧ください。

periodicity_code string 3 R
S

データ観測の頻度。 S = 半年に 1 回、R = 定期的

seasonal string 1,043 U
S

データが季節調整されているかどうかを識別するコード。 S = 季節調整済み、U = 未調整

series_id string 16,683 CUURS300SAD
CUURS300SAF11

特定の系列を識別するコード。 時系列とは、一定の時間間隔 (月 1 回、四半期に 1 回、半年に 1 回、年 1 回) で長期間にわたって観測された一連のデータを指します。 通常、BLS 時系列データは 1 か月間隔で生成され、特定の地域の価格が毎月収集される特定の消費財から、雇用率が毎月記録されている特定の業種の労働者のカテゴリまで、さまざまなデータを表します。詳細については、https://download.bls.gov/pub/time.series/cu/cu.txt をご覧ください。

series_title string 8,336 Alcoholic beverages in U.S. city average, all urban consumers, not seasonally adjusted
Transportation in Los Angeles-Long Beach-Anaheim, CA, all urban consumers, not seasonally adjusted

対応する series_id の系列名。 系列 ID と系列名については、 https://download.bls.gov/pub/time.series/cu/cu.series をご覧ください。

value float 310,603 100.0
101.0999984741211

商品の物価指数。

year int 25 2018
2017

観測の年を示します。

Select your preferred service:

Azure Notebooks

Azure Databricks

Azure Synapse

Azure Notebooks

Package: Language: Python Python
In [2]:
# This is a package in preview.
from azureml.opendatasets import UsLaborCPI

usLaborCPI = UsLaborCPI()
usLaborCPI_df = usLaborCPI.to_pandas_dataframe()
ActivityStarted, to_pandas_dataframe
ActivityStarted, to_pandas_dataframe_in_worker
Looking for parquet files...
Reading them into Pandas dataframe...
Reading cpi/part-00000-tid-8289857611821412231-4ef1bca9-6386-4e12-8c7a-31d3ff5d4bc7-3154-1-c000.snappy.parquet under container laborstatisticscontainer
Done.
ActivityCompleted: Activity=to_pandas_dataframe_in_worker, HowEnded=Success, Duration=29342.59 [ms]
ActivityCompleted: Activity=to_pandas_dataframe, HowEnded=Success, Duration=29374.5 [ms]
In [3]:
usLaborCPI_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 11624937 entries, 0 to 11624936
Data columns (total 12 columns):
area_code           object
item_code           object
series_id           object
year                int32
period              object
value               float32
footnote_codes      object
seasonal            object
periodicity_code    object
series_title        object
item_name           object
area_name           object
dtypes: float32(1), int32(1), object(10)
memory usage: 975.6+ MB
In [1]:
# Pip install packages
import os, sys

!{sys.executable} -m pip install azure-storage-blob
!{sys.executable} -m pip install pyarrow
!{sys.executable} -m pip install pandas
In [2]:
# Azure storage access info
azure_storage_account_name = "azureopendatastorage"
azure_storage_sas_token = r""
container_name = "laborstatisticscontainer"
folder_name = "cpi/"
In [3]:
from azure.storage.blob import BlockBlobServicefrom azure.storage.blob import BlobServiceClient, BlobClient, ContainerClient

if azure_storage_account_name is None or azure_storage_sas_token is None:
    raise Exception(
        "Provide your specific name and key for your Azure Storage account--see the Prerequisites section earlier.")

print('Looking for the first parquet under the folder ' +
      folder_name + ' in container "' + container_name + '"...')
container_url = f"https://{azure_storage_account_name}.blob.core.windows.net/"
blob_service_client = BlobServiceClient(
    container_url, azure_storage_sas_token if azure_storage_sas_token else None)

container_client = blob_service_client.get_container_client(container_name)
blobs = container_client.list_blobs(folder_name)
sorted_blobs = sorted(list(blobs), key=lambda e: e.name, reverse=True)
targetBlobName = ''
for blob in sorted_blobs:
    if blob.name.startswith(folder_name) and blob.name.endswith('.parquet'):
        targetBlobName = blob.name
        break

print('Target blob to download: ' + targetBlobName)
_, filename = os.path.split(targetBlobName)
blob_client = container_client.get_blob_client(targetBlobName)
with open(filename, 'wb') as local_file:
    blob_client.download_blob().download_to_stream(local_file)
In [4]:
# Read the parquet file into Pandas data frame
import pandas as pd

print('Reading the parquet file into Pandas data frame')
df = pd.read_parquet(filename)
In [5]:
# you can add your filter at below
print('Loaded as a Pandas data frame: ')
df
In [6]:
 

Azure Databricks

Package: Language: Python Python
In [1]:
# This is a package in preview.
from azureml.opendatasets import UsLaborCPI

usLaborCPI = UsLaborCPI()
usLaborCPI_df = usLaborCPI.to_spark_dataframe()
ActivityStarted, to_spark_dataframe ActivityStarted, to_spark_dataframe_in_worker ActivityCompleted: Activity=to_spark_dataframe_in_worker, HowEnded=Success, Duration=3007.07 [ms] ActivityCompleted: Activity=to_spark_dataframe, HowEnded=Success, Duration=3011.43 [ms]
In [2]:
display(usLaborCPI_df.limit(5))
area_codeitem_codeseries_idyearperiodvaluefootnote_codesseasonalperiodicity_codeseries_titleitem_namearea_name
S49ESEHF01CWURS49ESEHF01 2017M12279.976nanURElectricity in San Diego-Carlsbad, CA, urban wage earners and clerical workers, not seasonally adjustedElectricitySan Diego-Carlsbad, CA
S49ESEHF01CWURS49ESEHF01 2017M12279.976nanURElectricity in San Diego-Carlsbad, CA, urban wage earners and clerical workers, not seasonally adjustedElectricitySan Diego-Carlsbad, CA
S49ESEHF01CWURS49ESEHF01 2017M12279.976nanURElectricity in San Diego-Carlsbad, CA, urban wage earners and clerical workers, not seasonally adjustedElectricitySan Diego-Carlsbad, CA
S49ESEHF01CWURS49ESEHF01 2017M12279.976nanURElectricity in San Diego-Carlsbad, CA, urban wage earners and clerical workers, not seasonally adjustedElectricitySan Diego-Carlsbad, CA
S49ESEHF01CWURS49ESEHF01 2017M12279.976nanURElectricity in San Diego-Carlsbad, CA, urban wage earners and clerical workers, not seasonally adjustedElectricitySan Diego-Carlsbad, CA
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "laborstatisticscontainer"
blob_relative_path = "cpi/"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))

Azure Synapse

Package: Language: Python
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "laborstatisticscontainer"
blob_relative_path = "cpi/"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))