ナビゲーションをスキップする

NYC Taxi & Limousine Commission - green taxi trip records

NYC TLC Taxi green

グリーン タクシー乗車記録には、乗車と降車の日時、乗車と降車の場所、移動距離、料金明細、料金の種類、支払いの種類、運転手から報告された乗車人数が入力されたフィールドが含まれています。

ボリュームとデータ保持期間

このデータセットは Parquet 形式で保存されています。 2018 年時点で合計約 8,000 万行 (2 GB) あります。

このデータセットには、2009 年から 2018 年までに蓄積された過去の記録が含まれます。 SDK でパラメーター設定を使用して、特定の時間範囲内のデータをフェッチできます。

保存先

このデータセットは、米国東部 Azure リージョンに保存されています。 アフィニティのために、米国東部でコンピューティング リソースを割り当てることをお勧めします。

追加情報

ニューヨーク市タクシー & リムジン委員会 (TLC):

データは、Taxicab & Livery Passenger Enhancement Programs (TPEP/LPEP) の下で承認されたテクノロジ プロバイダーによって収集され、ニューヨーク市タクシー & リムジン委員会 (TLC) に提供されました。 乗車データは TLC によって作成されたものではなく、TLC はこれらのデータの正確性に関して一切の表明を行いません。

TLC 乗車記録データに関する追加情報については、こちらこちらをご覧ください。

通知

Microsoft は、Azure オープン データセットを “現状有姿” で提供します。 Microsoft は、データセットの使用に関して、明示または黙示を問わず、いかなる保証も行わないものとし、条件を定めることもありません。 現地の法律の下で認められている範囲内で、Microsoft は、データセットの使用に起因する、直接的、派生的、特別、間接的、偶発的、または懲罰的なものを含めたいかなる損害または損失に対しても一切の責任を負わないものとします。

このデータセットは、Microsoft がソース データを受け取った元の条件に基づいて提供されます。 データセットには、Microsoft が提供するデータが含まれている場合があります。

Access

Available inWhen to use
Azure Notebooks

Quickly explore the dataset with Jupyter notebooks hosted on Azure or your local machine.

Azure Databricks

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Azure Synapse

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Preview

vendorID lpepPickupDatetime lpepDropoffDatetime passengerCount tripDistance puLocationId doLocationId rateCodeID storeAndFwdFlag paymentType fareAmount extra mtaTax improvementSurcharge tipAmount tollsAmount totalAmount tripType puYear puMonth
2 6/24/2081 5:40:37 PM 6/24/2081 6:42:47 PM 1 16.95 93 117 1 N 1 52 1 0.5 0.3 0 2.16 55.96 1 2081 6
2 11/28/2030 12:19:29 AM 11/28/2030 12:25:37 AM 1 1.08 42 247 1 N 2 6.5 0 0.5 0.3 0 0 7.3 1 2030 11
2 11/28/2030 12:14:50 AM 11/28/2030 12:14:54 AM 1 0.03 42 42 5 N 2 5 0 0 0 0 0 5 2 2030 11
2 11/14/2020 11:38:07 AM 11/14/2020 11:42:22 AM 1 0.63 129 129 1 N 2 4.5 1 0.5 0.3 0 0 6.3 1 2020 11
2 11/14/2020 9:55:36 AM 11/14/2020 10:04:54 AM 1 3.8 82 138 1 N 2 12.5 1 0.5 0.3 0 0 14.3 1 2020 11
2 8/26/2019 4:18:37 PM 8/26/2019 4:19:35 PM 1 0 264 264 1 N 2 1 0 0.5 0.3 0 0 1.8 1 2019 8
2 7/1/2019 8:28:33 AM 7/1/2019 8:32:33 AM 1 0.71 7 7 1 N 1 5 0 0.5 0.3 1.74 0 7.54 1 2019 7
2 7/1/2019 12:04:53 AM 7/1/2019 12:21:56 AM 1 2.71 223 145 1 N 2 13 0.5 0.5 0.3 0 0 14.3 1 2019 7
2 7/1/2019 12:04:11 AM 7/1/2019 12:21:15 AM 1 3.14 166 142 1 N 2 14.5 0.5 0.5 0.3 0 0 18.55 1 2019 7
2 7/1/2019 12:03:37 AM 7/1/2019 12:09:27 AM 1 0.78 74 74 1 N 1 6 0.5 0.5 0.3 1.46 0 8.76 1 2019 7
Name Data type Unique Values (sample) Description
doLocationId string 264 74
42

タクシーメーターが解除された DOLocationID TLC タクシー ゾーン。

dropoffLatitude double 109,721 40.7743034362793
40.77431869506836

2016 年 7 月以降は非推奨

dropoffLongitude double 75,502 -73.95272827148438
-73.95274353027344

2016 年 7 月以降は非推奨

extra double 202 0.5
1.0

その他の割増料金と追加料金。 現在、これには 0.50 ドルおよび 1 ドルのラッシュアワー料金と夜間料金のみが含まれます。

fareAmount double 10,367 6.0
5.5

メーターによって計算された時間距離併用運賃。

improvementSurcharge string 92 0.3
0

初乗り運賃での乗車に課される 0.30 ドルの改善追加料金。 改善追加料金は 2015 年に徴収が開始されました。

lpepDropoffDatetime timestamp 58,100,713 2016-05-22 00:00:00
2016-05-09 00:00:00

メーターが解除された日時。

lpepPickupDatetime timestamp 58,157,349 2013-10-22 12:40:36
2014-08-09 15:54:25

メーターが作動し始めた日時。

mtaTax double 34 0.5
-0.5

使用中のメーター制料金に基づいて自動的にトリガーされる 0.50 ドルの MTA 税。

passengerCount int 10 1
2

乗車人数。

これは運転手が入力した値です。

paymentType int 5 2
1

乗客が乗車料金をどのように支払ったかを示す数値コード。

1 = クレジット カード

2 = 現金

3 = 無料

4 = 争議

5 = 不明

6 = 乗車の無効化

pickupLatitude double 95,110 40.721351623535156
40.721336364746094

2016 年 7 月以降は非推奨

pickupLongitude double 55,722 -73.84429931640625
-73.84429168701172

2016 年 7 月以降は非推奨

puLocationId string 264 74
41

タクシーメーターが作動し始めた TLC タクシー ゾーン。

puMonth int 12 3
5
puYear int 14 2015
2016
rateCodeID int 7 1
5

乗車終了時に適用される最終的な料金コード。

1 = 標準料金

2 = JFK

3 = ニューアーク

4 = ナッソーまたはウエストチェスター

5 = 交渉料金

6 = 相乗り

storeAndFwdFlag string 2 N
Y

このフラグは、車両がサーバーに接続されていないため、乗車記録がベンダーに送信される前に車両のメモリに保持されていたどうか (“ストア アンド フォワード” とも呼ばれます) を示します。

Y = ストア アンド フォワードの乗車記録

N = ストア アンド フォワードの乗車記録ではない

tipAmount double 6,206 1.0
2.0

チップの金額 - このフィールドは、クレジット カードのチップの場合に自動的に入力されます。 現金のチップは含まれません。

tollsAmount double 2,150 5.54
5.76

乗車中に支払われたすべての通行料金の合計金額。

totalAmount double 20,188 7.8
6.8

乗客に請求される合計金額。 現金のチップは含まれません。

tripDistance double 7,060 0.9
1.0

タクシーメーターによって報告された走行距離 (マイル単位)。

tripType int 3 1
2

乗車が乗客の呼び止めと配車のどちらであるかを示すコード。配車は、使用中のメーター料金に基づいて自動的に割り当てられますが、運転手が変更できます。

1 = 乗客の呼び止め

2 = 配車

vendorID int 2 2
1

レコードを提供した LPEP プロバイダーを示すコード。

1 = Creative Mobile Technologies, LLC、

2 = VeriFone Inc.

Select your preferred service:

Azure Notebooks

Azure Databricks

Azure Synapse

Azure Notebooks

Package: Language: Python Python
In [1]:
# This is a package in preview.
from azureml.opendatasets import NycTlcGreen

from datetime import datetime
from dateutil import parser


end_date = parser.parse('2018-06-06')
start_date = parser.parse('2018-05-01')
nyc_tlc = NycTlcGreen(start_date=start_date, end_date=end_date)
nyc_tlc_df = nyc_tlc.to_pandas_dataframe()
ActivityStarted, to_pandas_dataframe ActivityStarted, to_pandas_dataframe_in_worker Target paths: ['/puYear=2018/puMonth=5/', '/puYear=2018/puMonth=6/'] Looking for parquet files... Reading them into Pandas dataframe... Reading green/puYear=2018/puMonth=5/part-00087-tid-6037743401120983271-619c4849-c957-4290-a1b8-66832cb385b6-12506.c000.snappy.parquet under container nyctlc Reading green/puYear=2018/puMonth=6/part-00171-tid-6037743401120983271-619c4849-c957-4290-a1b8-66832cb385b6-12590.c000.snappy.parquet under container nyctlc Done. ActivityCompleted: Activity=to_pandas_dataframe_in_worker, HowEnded=Success, Duration=5555.67 [ms] ActivityCompleted: Activity=to_pandas_dataframe, HowEnded=Success, Duration=5559.68 [ms]
In [2]:
nyc_tlc_df.info()
<class 'pandas.core.frame.DataFrame'> Int64Index: 923257 entries, 0 to 498783 Data columns (total 23 columns): vendorID 923257 non-null int32 lpepPickupDatetime 923257 non-null datetime64[ns] lpepDropoffDatetime 923257 non-null datetime64[ns] passengerCount 923257 non-null int32 tripDistance 923257 non-null float64 puLocationId 923257 non-null object doLocationId 923257 non-null object pickupLongitude 0 non-null float64 pickupLatitude 0 non-null float64 dropoffLongitude 0 non-null float64 dropoffLatitude 0 non-null float64 rateCodeID 923257 non-null int32 storeAndFwdFlag 923257 non-null object paymentType 923257 non-null int32 fareAmount 923257 non-null float64 extra 923257 non-null float64 mtaTax 923257 non-null float64 improvementSurcharge 923257 non-null object tipAmount 923257 non-null float64 tollsAmount 923257 non-null float64 ehailFee 0 non-null float64 totalAmount 923257 non-null float64 tripType 923257 non-null int32 dtypes: datetime64[ns](2), float64(12), int32(5), object(4) memory usage: 151.4+ MB
In [1]:
# Pip install packages
import os, sys

!{sys.executable} -m pip install azure-storage-blob
!{sys.executable} -m pip install pyarrow
!{sys.executable} -m pip install pandas
In [2]:
# Azure storage access info
azure_storage_account_name = "azureopendatastorage"
azure_storage_sas_token = r""
container_name = "nyctlc"
folder_name = "green"
In [3]:
from azure.storage.blob import BlockBlobServicefrom azure.storage.blob import BlobServiceClient, BlobClient, ContainerClient

if azure_storage_account_name is None or azure_storage_sas_token is None:
    raise Exception(
        "Provide your specific name and key for your Azure Storage account--see the Prerequisites section earlier.")

print('Looking for the first parquet under the folder ' +
      folder_name + ' in container "' + container_name + '"...')
container_url = f"https://{azure_storage_account_name}.blob.core.windows.net/"
blob_service_client = BlobServiceClient(
    container_url, azure_storage_sas_token if azure_storage_sas_token else None)

container_client = blob_service_client.get_container_client(container_name)
blobs = container_client.list_blobs(folder_name)
sorted_blobs = sorted(list(blobs), key=lambda e: e.name, reverse=True)
targetBlobName = ''
for blob in sorted_blobs:
    if blob.name.startswith(folder_name) and blob.name.endswith('.parquet'):
        targetBlobName = blob.name
        break

print('Target blob to download: ' + targetBlobName)
_, filename = os.path.split(targetBlobName)
blob_client = container_client.get_blob_client(targetBlobName)
with open(filename, 'wb') as local_file:
    blob_client.download_blob().download_to_stream(local_file)
In [4]:
# Read the parquet file into Pandas data frame
import pandas as pd

print('Reading the parquet file into Pandas data frame')
df = pd.read_parquet(filename)
In [5]:
# you can add your filter at below
print('Loaded as a Pandas data frame: ')
df
In [6]:
 

Azure Databricks

Package: Language: Python Python
In [1]:
# This is a package in preview.
# You need to pip install azureml-opendatasets in Databricks cluster. https://docs.microsoft.com/en-us/azure/data-explorer/connect-from-databricks#install-the-python-library-on-your-azure-databricks-cluster
from azureml.opendatasets import NycTlcGreen

from datetime import datetime
from dateutil import parser


end_date = parser.parse('2018-06-06')
start_date = parser.parse('2018-05-01')
nyc_tlc = NycTlcGreen(start_date=start_date, end_date=end_date)
nyc_tlc_df = nyc_tlc.to_spark_dataframe()
ActivityStarted, to_spark_dataframe ActivityStarted, to_spark_dataframe_in_worker ActivityCompleted: Activity=to_spark_dataframe_in_worker, HowEnded=Success, Duration=47328.45 [ms] ActivityCompleted: Activity=to_spark_dataframe, HowEnded=Success, Duration=47332.79 [ms]
In [2]:
display(nyc_tlc_df.limit(5))
vendorIDlpepPickupDatetimelpepDropoffDatetimepassengerCounttripDistancepuLocationIddoLocationIdpickupLongitudepickupLatitudedropoffLongitudedropoffLatituderateCodeIDstoreAndFwdFlagpaymentTypefareAmountextramtaTaximprovementSurchargetipAmounttollsAmountehailFeetotalAmounttripTypepuYearpuMonth
22018-05-23T23:14:19.000+00002018-05-23T23:17:43.000+000010.611642nullnullnullnull1N14.50.00.50.30.010.0null5.31120185
22018-05-23T23:24:21.000+00002018-05-23T23:33:00.000+000011.1442116nullnullnullnull1N17.00.00.50.31.560.0null9.36120185
22018-05-07T08:52:57.000+00002018-05-08T03:14:08.000+000011.27119247nullnullnullnull1N27.50.00.50.30.00.0null8.3120185
22018-05-07T03:16:20.000+00002018-05-07T03:39:26.000+000013.8224718nullnullnullnull1N117.50.00.50.30.00.0null18.3120185
22018-05-07T03:40:25.000+00002018-05-07T03:46:11.000+000010.9818136nullnullnullnull1N26.00.00.50.30.00.0null6.8120185
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "nyctlc"
blob_relative_path = "green"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))

Azure Synapse

Package: Language: Python Python
In [6]:
# This is a package in preview.
from azureml.opendatasets import NycTlcGreen

from datetime import datetime
from dateutil import parser


end_date = parser.parse('2018-06-06')
start_date = parser.parse('2018-05-01')
nyc_tlc = NycTlcGreen(start_date=start_date, end_date=end_date)
nyc_tlc_df = nyc_tlc.to_spark_dataframe()
In [7]:
# Display top 5 rows
display(nyc_tlc_df.limit(5))
Out[7]:
In [9]:
# Display data statistic information
display(nyc_tlc_df, summary = True)
Out[9]:
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "nyctlc"
blob_relative_path = "green"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))