ナビゲーションをスキップする

投稿者: Takuto Higuchi

MLOps Blog Series Part 4: Testing security of secure machine learning systems using MLOps

2022年7月12日

The growing adoption of data-driven and machine learning-based solutions is driving the need for businesses to handle growing workloads, exposing them to extra levels of complexities and vulnerabilities. Here are some key approaches and tests for securing your machine learning systems against attacks with Azure Machine Learning using MLOps.

Product Marketing Manager, Data and AI Marketing

MLOps Blog Series Part 2: Testing robustness of secure machine learning systems using machine learning ops

2022年6月22日

Robustness is the ability of a closed-loop system to tolerate perturbations or anomalies while system parameters are varied over a wide range. There are three essential tests to ensure that the machine learning system is robust in the production environments: unit tests, data and model testing, and integration testing.

Product Marketing Manager, Data and AI Marketing

MLOps ブログ シリーズ パート 1: MLOps を使用した機械学習システムのテスト術

2022年6月14日

機械学習システム開発のライフ サイクルにおいて、テストは高品質な運用を保証するための重要な作業です。このブログでは、機械学習システムのテストを機械学習運用 (MLOps) の観点から見て、堅牢でスケーラブル、かつ安全な機械学習システムを構築するために使用できる優れた事例の実践とテスト フレームワークについて学んでいきます。

Product Marketing Manager, Data and AI Marketing