Ignora esplorazione

NYC Taxi & Limousine Commission - green taxi trip records

NYC TLC Taxi green

I record relativi alle corse dei taxi verdi includono campi contenenti data e ora di partenza e di arrivo, luogo di partenza e di arrivo, distanze delle corse, dettaglio delle tariffe, tipi di tariffa, tipi di pagamento e numero di passeggeri segnalato dal tassista.

Volume e conservazione

Il set di dati è archiviato nel formato Parquet. Sono disponibili in totale circa 80 milioni di righe (2 GB) a oggi (2018).

Questo set di dati include record cronologici accumulati dal 2009 al 2018. Puoi usare le impostazioni dei parametri nell’SDK per recuperare i dati entro un intervallo di tempo specifico.

Posizione di archiviazione

Questo set di dati è archiviato nell’area Stati Uniti orientali di Azure. L’allocazione delle risorse di calcolo nell’area Stati Uniti orientali è consigliata per motivi di affinità.

Informazioni aggiuntive

NYC Taxi and Limousine Commission (TLC):

I dati sono stati raccolti e forniti a NYC Taxi and Limousine Commission (TLC) da fornitori di soluzioni tecnologiche autorizzati in conformità con i programmi Taxicab e Livery Passenger Enhancement Program (TPEP/LPEP). I dati relativi alle corse non sono stati creati da TLC e TLC non rilascia alcuna dichiarazione relativamente alla correttezza di tali dati.

Informazioni aggiuntive sui dati relativi ai record delle corse di TLC sono disponibili qui e qui.

Notifiche

MICROSOFT FORNISCE I SET DI DATI APERTI DI AZURE “COSÌ COME SONO”. MICROSOFT NON OFFRE ALCUNA GARANZIA O CONDIZIONE ESPLICITA O IMPLICITA RELATIVAMENTE ALL’USO DEI SET DI DATI DA PARTE DELL’UTENTE. NELLA MISURA MASSIMA CONSENTITA DALLE LEGGI LOCALI, MICROSOFT NON RICONOSCE ALCUNA RESPONSABILITÀ RELATIVAMENTE A DANNI O PERDITE COMMERCIALI, INCLUSI I DANNI DIRETTI, CONSEQUENZIALI, SPECIALI, INDIRETTI, INCIDENTALI O PUNITIVI DERIVANTI DALL’USO DEI SET DI DATI DA PARTE DELL’UTENTE.

Questo set di dati viene fornito in conformità con le condizioni originali in base alle quali Microsoft ha ricevuto i dati di origine. Il set di dati potrebbe includere dati provenienti da Microsoft.

Access

Available inWhen to use
Azure Notebooks

Quickly explore the dataset with Jupyter notebooks hosted on Azure or your local machine.

Azure Databricks

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Azure Synapse

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Preview

vendorID lpepPickupDatetime lpepDropoffDatetime passengerCount tripDistance puLocationId doLocationId rateCodeID storeAndFwdFlag paymentType fareAmount extra mtaTax improvementSurcharge tipAmount tollsAmount totalAmount tripType puYear puMonth
2 6/24/2081 5:40:37 PM 6/24/2081 6:42:47 PM 1 16.95 93 117 1 N 1 52 1 0.5 0.3 0 2.16 55.96 1 2081 6
2 11/28/2030 12:19:29 AM 11/28/2030 12:25:37 AM 1 1.08 42 247 1 N 2 6.5 0 0.5 0.3 0 0 7.3 1 2030 11
2 11/28/2030 12:14:50 AM 11/28/2030 12:14:54 AM 1 0.03 42 42 5 N 2 5 0 0 0 0 0 5 2 2030 11
2 11/14/2020 11:38:07 AM 11/14/2020 11:42:22 AM 1 0.63 129 129 1 N 2 4.5 1 0.5 0.3 0 0 6.3 1 2020 11
2 11/14/2020 9:55:36 AM 11/14/2020 10:04:54 AM 1 3.8 82 138 1 N 2 12.5 1 0.5 0.3 0 0 14.3 1 2020 11
2 8/26/2019 4:18:37 PM 8/26/2019 4:19:35 PM 1 0 264 264 1 N 2 1 0 0.5 0.3 0 0 1.8 1 2019 8
2 7/1/2019 8:28:33 AM 7/1/2019 8:32:33 AM 1 0.71 7 7 1 N 1 5 0 0.5 0.3 1.74 0 7.54 1 2019 7
2 7/1/2019 12:04:53 AM 7/1/2019 12:21:56 AM 1 2.71 223 145 1 N 2 13 0.5 0.5 0.3 0 0 14.3 1 2019 7
2 7/1/2019 12:04:11 AM 7/1/2019 12:21:15 AM 1 3.14 166 142 1 N 2 14.5 0.5 0.5 0.3 0 0 18.55 1 2019 7
2 7/1/2019 12:03:37 AM 7/1/2019 12:09:27 AM 1 0.78 74 74 1 N 1 6 0.5 0.5 0.3 1.46 0 8.76 1 2019 7
Name Data type Unique Values (sample) Description
doLocationId string 264 74
42

DOLocationID dell’area taxi TLC in cui è stato attivato il tassametro.

dropoffLatitude double 109,721 40.7743034362793
40.77431869506836

Deprecato a partire da 2016.07

dropoffLongitude double 75,502 -73.95272827148438
-73.95274353027344

Deprecato a partire da 2016.07

extra double 202 0.5
1.0

Extra e maggiorazioni vari. Include attualmente solo gli addebiti pari a 0,50 USD e 1 USD per l’ora di punta e per la notte.

fareAmount double 10,367 6.0
5.5

Tariffa in base a durata e distanza calcolata dal tassametro.

improvementSurcharge string 92 0.3
0

Maggiorazione di $ 0,30 per il miglioramento del servizio aggiunta alla tariffa fissa sulle corse dei taxi chiamati in strada. La maggiorazione per il miglioramento del servizio viene applicata dal 2015.

lpepDropoffDatetime timestamp 58,100,713 2016-05-22 00:00:00
2016-05-09 00:00:00

Data e ora in cui è stato disattivato il tassametro.

lpepPickupDatetime timestamp 58,157,349 2013-10-22 12:40:36
2014-08-09 15:54:25

Data e ora in cui è stato attivato il contatore.

mtaTax double 34 0.5
-0.5

Imposta MTA di $ 0,50 automaticamente attivata in base alla tariffa del tassametro in uso.

passengerCount int 10 1
2

Numero di passeggeri nel veicolo.

Si tratta di un valore immesso dall’autista.

paymentType int 5 2
1

Codice numerico che indica il modo in cui il passeggero ha pagato la corsa.

1= carta di credito

2= contanti

3= nessun addebito

4= contestazione

5= sconosciuto

6= corsa nulla

pickupLatitude double 95,110 40.721351623535156
40.721336364746094

Deprecato a partire da 2016.07

pickupLongitude double 55,722 -73.84429931640625
-73.84429168701172

Deprecato a partire da 2016.07

puLocationId string 264 74
41

Valore TLC Taxi Zone in cui è stato attivato il tassametro.

puMonth int 12 3
5
puYear int 14 2015
2016
rateCodeID int 7 1
5

Codice di tariffa finale in vigore alla fine della corsa.

1= Tariffa standard

2= JFK

3= Newark

4= Nassau o Westchester

5= Tariffa negoziata

6= Corsa di gruppo

storeAndFwdFlag string 2 N
Y

Questo flag indica se il record relativo alla corsa è stato conservato nella memoria del veicolo prima dell’invio al fornitore, ovvero con la modalità “archivia e inoltra”, perché il veicolo non era connesso al server.

Y= corsa con archiviazione e inoltro

N= corsa senza archiviazione e inoltro

tipAmount double 6,206 1.0
2.0

Importo delle mance: questo campo viene popolato automaticamente per le mance tramite carta di credito. Le mance in contanti non sono incluse.

tollsAmount double 2,150 5.54
5.76

Importo totale di tutti i pedaggi pagati durante la corsa.

totalAmount double 20,188 7.8
6.8

Importo totale addebitato ai passeggeri. Non include le mance in contanti.

tripDistance double 7,060 0.9
1.0

Distanza percorsa durante la corsa in miglia segnalata dal tassametro.

tripType int 3 1
2

Codice che indica se la corsa ha avuto inizio con una richiesta a bordo strada o una chiamata ufficiale assegnata automaticamente in base alla tariffa del tassametro in uso ma modificabile dal guidatore.

1= richiesta a bordo strada

2= assegnazione ufficiale

vendorID int 2 2
1

Codice che indica il fornitore LPEP che ha fornito il record.

1= Creative Mobile Technologies, LLC;

2= VeriFone Inc.

Select your preferred service:

Azure Notebooks

Azure Databricks

Azure Synapse

Azure Notebooks

Package: Language: Python Python
In [1]:
# This is a package in preview.
from azureml.opendatasets import NycTlcGreen

from datetime import datetime
from dateutil import parser


end_date = parser.parse('2018-06-06')
start_date = parser.parse('2018-05-01')
nyc_tlc = NycTlcGreen(start_date=start_date, end_date=end_date)
nyc_tlc_df = nyc_tlc.to_pandas_dataframe()
ActivityStarted, to_pandas_dataframe ActivityStarted, to_pandas_dataframe_in_worker Target paths: ['/puYear=2018/puMonth=5/', '/puYear=2018/puMonth=6/'] Looking for parquet files... Reading them into Pandas dataframe... Reading green/puYear=2018/puMonth=5/part-00087-tid-6037743401120983271-619c4849-c957-4290-a1b8-66832cb385b6-12506.c000.snappy.parquet under container nyctlc Reading green/puYear=2018/puMonth=6/part-00171-tid-6037743401120983271-619c4849-c957-4290-a1b8-66832cb385b6-12590.c000.snappy.parquet under container nyctlc Done. ActivityCompleted: Activity=to_pandas_dataframe_in_worker, HowEnded=Success, Duration=5555.67 [ms] ActivityCompleted: Activity=to_pandas_dataframe, HowEnded=Success, Duration=5559.68 [ms]
In [2]:
nyc_tlc_df.info()
<class 'pandas.core.frame.DataFrame'> Int64Index: 923257 entries, 0 to 498783 Data columns (total 23 columns): vendorID 923257 non-null int32 lpepPickupDatetime 923257 non-null datetime64[ns] lpepDropoffDatetime 923257 non-null datetime64[ns] passengerCount 923257 non-null int32 tripDistance 923257 non-null float64 puLocationId 923257 non-null object doLocationId 923257 non-null object pickupLongitude 0 non-null float64 pickupLatitude 0 non-null float64 dropoffLongitude 0 non-null float64 dropoffLatitude 0 non-null float64 rateCodeID 923257 non-null int32 storeAndFwdFlag 923257 non-null object paymentType 923257 non-null int32 fareAmount 923257 non-null float64 extra 923257 non-null float64 mtaTax 923257 non-null float64 improvementSurcharge 923257 non-null object tipAmount 923257 non-null float64 tollsAmount 923257 non-null float64 ehailFee 0 non-null float64 totalAmount 923257 non-null float64 tripType 923257 non-null int32 dtypes: datetime64[ns](2), float64(12), int32(5), object(4) memory usage: 151.4+ MB
In [1]:
# Pip install packages
import os, sys

!{sys.executable} -m pip install azure-storage-blob
!{sys.executable} -m pip install pyarrow
!{sys.executable} -m pip install pandas
In [2]:
# Azure storage access info
azure_storage_account_name = "azureopendatastorage"
azure_storage_sas_token = r""
container_name = "nyctlc"
folder_name = "green"
In [3]:
from azure.storage.blob import BlockBlobServicefrom azure.storage.blob import BlobServiceClient, BlobClient, ContainerClient

if azure_storage_account_name is None or azure_storage_sas_token is None:
    raise Exception(
        "Provide your specific name and key for your Azure Storage account--see the Prerequisites section earlier.")

print('Looking for the first parquet under the folder ' +
      folder_name + ' in container "' + container_name + '"...')
container_url = f"https://{azure_storage_account_name}.blob.core.windows.net/"
blob_service_client = BlobServiceClient(
    container_url, azure_storage_sas_token if azure_storage_sas_token else None)

container_client = blob_service_client.get_container_client(container_name)
blobs = container_client.list_blobs(folder_name)
sorted_blobs = sorted(list(blobs), key=lambda e: e.name, reverse=True)
targetBlobName = ''
for blob in sorted_blobs:
    if blob.name.startswith(folder_name) and blob.name.endswith('.parquet'):
        targetBlobName = blob.name
        break

print('Target blob to download: ' + targetBlobName)
_, filename = os.path.split(targetBlobName)
blob_client = container_client.get_blob_client(targetBlobName)
with open(filename, 'wb') as local_file:
    blob_client.download_blob().download_to_stream(local_file)
In [4]:
# Read the parquet file into Pandas data frame
import pandas as pd

print('Reading the parquet file into Pandas data frame')
df = pd.read_parquet(filename)
In [5]:
# you can add your filter at below
print('Loaded as a Pandas data frame: ')
df
In [6]:
 

Azure Databricks

Package: Language: Python Python
In [1]:
# This is a package in preview.
# You need to pip install azureml-opendatasets in Databricks cluster. https://docs.microsoft.com/en-us/azure/data-explorer/connect-from-databricks#install-the-python-library-on-your-azure-databricks-cluster
from azureml.opendatasets import NycTlcGreen

from datetime import datetime
from dateutil import parser


end_date = parser.parse('2018-06-06')
start_date = parser.parse('2018-05-01')
nyc_tlc = NycTlcGreen(start_date=start_date, end_date=end_date)
nyc_tlc_df = nyc_tlc.to_spark_dataframe()
ActivityStarted, to_spark_dataframe ActivityStarted, to_spark_dataframe_in_worker ActivityCompleted: Activity=to_spark_dataframe_in_worker, HowEnded=Success, Duration=47328.45 [ms] ActivityCompleted: Activity=to_spark_dataframe, HowEnded=Success, Duration=47332.79 [ms]
In [2]:
display(nyc_tlc_df.limit(5))
vendorIDlpepPickupDatetimelpepDropoffDatetimepassengerCounttripDistancepuLocationIddoLocationIdpickupLongitudepickupLatitudedropoffLongitudedropoffLatituderateCodeIDstoreAndFwdFlagpaymentTypefareAmountextramtaTaximprovementSurchargetipAmounttollsAmountehailFeetotalAmounttripTypepuYearpuMonth
22018-05-23T23:14:19.000+00002018-05-23T23:17:43.000+000010.611642nullnullnullnull1N14.50.00.50.30.010.0null5.31120185
22018-05-23T23:24:21.000+00002018-05-23T23:33:00.000+000011.1442116nullnullnullnull1N17.00.00.50.31.560.0null9.36120185
22018-05-07T08:52:57.000+00002018-05-08T03:14:08.000+000011.27119247nullnullnullnull1N27.50.00.50.30.00.0null8.3120185
22018-05-07T03:16:20.000+00002018-05-07T03:39:26.000+000013.8224718nullnullnullnull1N117.50.00.50.30.00.0null18.3120185
22018-05-07T03:40:25.000+00002018-05-07T03:46:11.000+000010.9818136nullnullnullnull1N26.00.00.50.30.00.0null6.8120185
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "nyctlc"
blob_relative_path = "green"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))

Azure Synapse

Package: Language: Python Python
In [6]:
# This is a package in preview.
from azureml.opendatasets import NycTlcGreen

from datetime import datetime
from dateutil import parser


end_date = parser.parse('2018-06-06')
start_date = parser.parse('2018-05-01')
nyc_tlc = NycTlcGreen(start_date=start_date, end_date=end_date)
nyc_tlc_df = nyc_tlc.to_spark_dataframe()
In [7]:
# Display top 5 rows
display(nyc_tlc_df.limit(5))
Out[7]:
In [9]:
# Display data statistic information
display(nyc_tlc_df, summary = True)
Out[9]:
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "nyctlc"
blob_relative_path = "green"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))