Navigáció kihagyása

Loan ChargeOff Prediction with SQL Server

Ez a megoldás bemutatja, hogy hogyan lehet létrehozni és üzembe helyezni a gépi tanulási modellt az SQL Server 2016 with R Services segítségével. Ez a modell képes jelezni, ha egy bankhitel esetében a következő 3 hónapban leértékelés várható.

Kreditausbuchungsprognose mit SQL ServerMit dieser Lösung wird veranschaulicht, wie Sie ein Machine Learning-Modell mit SQL Server 2016 mit R Services erstellen, um zu prognostizieren, ob für ein Bankdarlehen innerhalb der kommenden drei Monate eine Ausbuchung zu verzeichnen sein wird.

Jogi nyilatkozat

© 2017 Microsoft Corporation. Minden jog fenntartva. Ezt az információt jelen formájában nyújtjuk, és előzetes értesítés nélkül változhat. Az itt szereplő információkra a Microsoft nem vállal sem kifejezett, sem vélelmezett garanciát. A megoldás harmadik féltől származó adatok felhasználásával lett létrehozva. Ön felelős mások jogainak tiszteletben tartásáért, beleértve a hasonló adatkészletek létrehozásának céljából történő beszerzéseket és a vonatkozó licenceknek való megfelelőséget is.

Kreditausbuchungsprognose mit SQL ServerMit dieser Lösung wird veranschaulicht, wie Sie ein Machine Learning-Modell mit SQL Server 2016 mit R Services erstellen, um zu prognostizieren, ob für ein Bankdarlehen innerhalb der kommenden drei Monate eine Ausbuchung zu verzeichnen sein wird.

Kapcsolódó megoldásarchitektúrák

Bonitätsrisiko eines Kredits mit SQL ServerMit SQL Server 2016 mit R Services können Kreditinstitute mithilfe von Predictive Analytics die Anzahl von Darlehen reduzieren, die Kreditnehmern mit hoher Verzugswahrscheinlichkeit angeboten werden, und auf diese Weise die Rentabilität ihres Kreditportfolios steigern.

Loan Credit Risk with SQL Server

Az SQL Server 2016 with R Services segítségével a hitelintézet prediktív elemzéseket végezhet, amelyekkel kiszűrheti a nagy valószínűséggel fizetésképtelenné váló hiteligénylőket, és így növelheti a hitelportfólió nyereségességét.