Navigáció kihagyása

US Consumer Price Index

labor statistics cpi

A fogyasztói árindex (CPI) méri a lakosság által megvásárolt áruk, igénybe vett szolgáltatások árának átlagos változását egy meghatározott időintervallumon belül.

A README részletes adatokat tartalmaz erről az adatkészletről, az adatkészlet pedig letölthető az adatkészlet eredeti helyén.

Az adatkészlet forrása a fogyasztói árindex adatai, amelyet az Egyesült Államok Munkastatisztikai részlege (BLS) tett közzé. Az adatkészlet használatával kapcsolatos feltételekért tekintse meg a hivatkozási és szerzői jogi tudnivalókat és a fontos webhelyközleményeket.

Tárolási hely

Az adatkészlet tárolási helye a Kelet-USA Azure-régió. Az affinitás érdekében a Kelet-USA régión belüli számítási erőforrások lefoglalását javasoljuk.

Kapcsolódó adatkészletek

Értesítések

A MICROSOFT JELEN ÁLLAPOTUKBAN SZOLGÁLTATJA AZ AZURE NYÍLT ADATKÉSZLETEIT. A MICROSOFT NEM VÁLLAL SEMMINEMŰ KIFEJEZETT VAGY HALLGATÓLAGOS JÓTÁLLÁST AZ ADATKÉSZLETEK HASZNÁLATÁRA VONATKOZÓAN. A HELYI TÖRVÉNYEK ÁLTAL ENGEDETT MÉRTÉKBEN A MICROSOFT ELHÁRÍT MINDEN FELELŐSSÉGET AZ ADATKÉSZLETEK HASZNÁLATÁBÓL ADÓDÓ ESETLEGES KÁROKÉRT VAGY VESZTESÉGEKÉRT, BELEÉRTVE A KÖZVETLEN, KÖVETKEZMÉNYES, KÜLÖNLEGES, KÖZVETETT, VÉLETLEN VAGY BÜNTETÉSBŐL EREDŐ KÁROKAT.

Az adatkészletet a Microsoft forrásadataihoz tartozó eredeti feltételek szerint szolgáltatjuk. A készlet tartalmazhat Microsofttól származó adatokat.

Access

Available inWhen to use
Azure Notebooks

Quickly explore the dataset with Jupyter notebooks hosted on Azure or your local machine.

Azure Databricks

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Azure Synapse

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Preview

area_code item_code series_id year period value footnote_codes seasonal periodicity_code series_title item_name area_name
S49E SEHF01 CUURS49ESEHF01 2017 M12 279.974 nan U R Electricity in San Diego-Carlsbad, CA, all urban consumers, not seasonally adjusted Electricity San Diego-Carlsbad, CA
S49E SEHF01 CUURS49ESEHF01 2017 M12 279.974 nan U R Electricity in San Diego-Carlsbad, CA, all urban consumers, not seasonally adjusted Electricity San Diego-Carlsbad, CA
S49E SEHF01 CUURS49ESEHF01 2017 M12 279.974 nan U R Electricity in San Diego-Carlsbad, CA, all urban consumers, not seasonally adjusted Electricity San Diego-Carlsbad, CA
S49E SEHF01 CUURS49ESEHF01 2017 M12 279.974 nan U R Electricity in San Diego-Carlsbad, CA, all urban consumers, not seasonally adjusted Electricity San Diego-Carlsbad, CA
S49E SEHF01 CUURS49ESEHF01 2017 M12 279.974 nan U R Electricity in San Diego-Carlsbad, CA, all urban consumers, not seasonally adjusted Electricity San Diego-Carlsbad, CA
S49E SEHF01 CUURS49ESEHF01 2017 M12 279.974 nan U R Electricity in San Diego-Carlsbad, CA, all urban consumers, not seasonally adjusted Electricity San Diego-Carlsbad, CA
S49E SEHF01 CUURS49ESEHF01 2018 M01 284.456 nan U R Electricity in San Diego-Carlsbad, CA, all urban consumers, not seasonally adjusted Electricity San Diego-Carlsbad, CA
S49E SEHF01 CUURS49ESEHF01 2018 M01 284.456 nan U R Electricity in San Diego-Carlsbad, CA, all urban consumers, not seasonally adjusted Electricity San Diego-Carlsbad, CA
S49E SEHF01 CUURS49ESEHF01 2018 M01 284.456 nan U R Electricity in San Diego-Carlsbad, CA, all urban consumers, not seasonally adjusted Electricity San Diego-Carlsbad, CA
S49E SEHF01 CUURS49ESEHF01 2018 M01 284.456 nan U R Electricity in San Diego-Carlsbad, CA, all urban consumers, not seasonally adjusted Electricity San Diego-Carlsbad, CA
Name Data type Unique Values (sample) Description
area_code string 70 0000
0300

Egy adott földrajzi hely azonosításához használt egyedi kód. Az összes területkódot itt találja: http://download.bls.gov/pub/time.series/cu/cu.area

area_name string 69 U.S. city average
South

Adott földrajzi terület neve. Az összes területnevet és -kódot itt találja: https://download.bls.gov/pub/time.series/cu/cu.area.

footnote_codes string 3 nan
U

Az adatsorozathoz azonosít lábjegyzeteket. A legtöbb érték null.

item_code string 515 SA0E
SAF11

Az adatmegfigyelés tárgyául szolgáló elemet azonosítja. Az összes elemnevet és -kódot itt találja: https://download.bls.gov/pub/time.series/cu/cu.item.

item_name string 515 Energy
Food at home

Az elemek teljes neve. Az elemneveket és -kódokat itt találja: https://download.bls.gov/pub/time.series/cu/cu.txt.

period string 16 S01
S02

Az adatmegfigyelés időszakát azonosítja. Formátum: M01-M13 vagy S01-S03 (M=havi, M13=éves átlag, S=féléves). Például: M06=June. Az időszakneveket és -kódokat itt találja: https://download.bls.gov/pub/time.series/cu/cu.period.

periodicity_code string 3 R
S

A megfigyelés gyakorisága. S=Féléves; R=Rendszeres.

seasonal string 1,043 U
S

A szezonálisan igazított adatokat azonosító kód. S = szezonálisan igazított; U = nem igazított.

series_id string 16,683 CUURS000SAF116
CWURS400SAT

Az adott sorozatot azonosító kód. Az idősor konzisztens időintervallumokban hosszabb időtartam alatt megfigyelt adatokra vonatkozik (például havonta, negyedévente, félévente, évente). A BLS-idősor adatait általában havi rendszerességgel készítik, és a benne foglalt adatok egy bizonyos árucikk bizonyos földrajzi helyen havi rendszerességgel rögzített árát, vagy egy meghatározott iparágban dolgozó munkás havonta rögzített foglalkoztatási rátáját stb. ábrázolják. További információt itt talál: https://download.bls.gov/pub/time.series/cu/cu.txt.

series_title string 8,336 Other goods and services in Midwest - Size Class A, urban wage earners and clerical workers, not seasonally adjusted
All items less food and energy in Chicago-Naperville-Elgin, IL-IN-WI, all urban consumers, not seasonally adjusted

A vonatkozó idősornév sorazonosítója. A sorozatok azonosítóit és neveit itt találja: https://download.bls.gov/pub/time.series/cu/cu.series.

value float 310,603 100.0
101.0999984741211

A tétel árindexe.

year int 25 2018
2017

A megfigyelés évét azonosítja.

Select your preferred service:

Azure Notebooks

Azure Databricks

Azure Synapse

Azure Notebooks

Package: Language: Python Python
In [2]:
# This is a package in preview.
from azureml.opendatasets import UsLaborCPI

usLaborCPI = UsLaborCPI()
usLaborCPI_df = usLaborCPI.to_pandas_dataframe()
ActivityStarted, to_pandas_dataframe
ActivityStarted, to_pandas_dataframe_in_worker
Looking for parquet files...
Reading them into Pandas dataframe...
Reading cpi/part-00000-tid-8289857611821412231-4ef1bca9-6386-4e12-8c7a-31d3ff5d4bc7-3154-1-c000.snappy.parquet under container laborstatisticscontainer
Done.
ActivityCompleted: Activity=to_pandas_dataframe_in_worker, HowEnded=Success, Duration=29342.59 [ms]
ActivityCompleted: Activity=to_pandas_dataframe, HowEnded=Success, Duration=29374.5 [ms]
In [3]:
usLaborCPI_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 11624937 entries, 0 to 11624936
Data columns (total 12 columns):
area_code           object
item_code           object
series_id           object
year                int32
period              object
value               float32
footnote_codes      object
seasonal            object
periodicity_code    object
series_title        object
item_name           object
area_name           object
dtypes: float32(1), int32(1), object(10)
memory usage: 975.6+ MB
In [1]:
# Pip install packages
import os, sys

!{sys.executable} -m pip install azure-storage-blob
!{sys.executable} -m pip install pyarrow
!{sys.executable} -m pip install pandas
In [2]:
# Azure storage access info
azure_storage_account_name = "azureopendatastorage"
azure_storage_sas_token = r""
container_name = "laborstatisticscontainer"
folder_name = "cpi/"
In [3]:
from azure.storage.blob import BlockBlobServicefrom azure.storage.blob import BlobServiceClient, BlobClient, ContainerClient

if azure_storage_account_name is None or azure_storage_sas_token is None:
    raise Exception(
        "Provide your specific name and key for your Azure Storage account--see the Prerequisites section earlier.")

print('Looking for the first parquet under the folder ' +
      folder_name + ' in container "' + container_name + '"...')
container_url = f"https://{azure_storage_account_name}.blob.core.windows.net/"
blob_service_client = BlobServiceClient(
    container_url, azure_storage_sas_token if azure_storage_sas_token else None)

container_client = blob_service_client.get_container_client(container_name)
blobs = container_client.list_blobs(folder_name)
sorted_blobs = sorted(list(blobs), key=lambda e: e.name, reverse=True)
targetBlobName = ''
for blob in sorted_blobs:
    if blob.name.startswith(folder_name) and blob.name.endswith('.parquet'):
        targetBlobName = blob.name
        break

print('Target blob to download: ' + targetBlobName)
_, filename = os.path.split(targetBlobName)
blob_client = container_client.get_blob_client(targetBlobName)
with open(filename, 'wb') as local_file:
    blob_client.download_blob().download_to_stream(local_file)
In [4]:
# Read the parquet file into Pandas data frame
import pandas as pd

print('Reading the parquet file into Pandas data frame')
df = pd.read_parquet(filename)
In [5]:
# you can add your filter at below
print('Loaded as a Pandas data frame: ')
df
In [6]:
 

Azure Databricks

Package: Language: Python Python
In [1]:
# This is a package in preview.
from azureml.opendatasets import UsLaborCPI

usLaborCPI = UsLaborCPI()
usLaborCPI_df = usLaborCPI.to_spark_dataframe()
ActivityStarted, to_spark_dataframe ActivityStarted, to_spark_dataframe_in_worker ActivityCompleted: Activity=to_spark_dataframe_in_worker, HowEnded=Success, Duration=3007.07 [ms] ActivityCompleted: Activity=to_spark_dataframe, HowEnded=Success, Duration=3011.43 [ms]
In [2]:
display(usLaborCPI_df.limit(5))
area_codeitem_codeseries_idyearperiodvaluefootnote_codesseasonalperiodicity_codeseries_titleitem_namearea_name
S49ESEHF01CWURS49ESEHF01 2017M12279.976nanURElectricity in San Diego-Carlsbad, CA, urban wage earners and clerical workers, not seasonally adjustedElectricitySan Diego-Carlsbad, CA
S49ESEHF01CWURS49ESEHF01 2017M12279.976nanURElectricity in San Diego-Carlsbad, CA, urban wage earners and clerical workers, not seasonally adjustedElectricitySan Diego-Carlsbad, CA
S49ESEHF01CWURS49ESEHF01 2017M12279.976nanURElectricity in San Diego-Carlsbad, CA, urban wage earners and clerical workers, not seasonally adjustedElectricitySan Diego-Carlsbad, CA
S49ESEHF01CWURS49ESEHF01 2017M12279.976nanURElectricity in San Diego-Carlsbad, CA, urban wage earners and clerical workers, not seasonally adjustedElectricitySan Diego-Carlsbad, CA
S49ESEHF01CWURS49ESEHF01 2017M12279.976nanURElectricity in San Diego-Carlsbad, CA, urban wage earners and clerical workers, not seasonally adjustedElectricitySan Diego-Carlsbad, CA
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "laborstatisticscontainer"
blob_relative_path = "cpi/"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))

Azure Synapse

Package: Language: Python
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "laborstatisticscontainer"
blob_relative_path = "cpi/"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))