Passer la navigation

NYC Taxi & Limousine Commission - yellow taxi trip records

NYC TLC Taxi yellow

Les enregistrements de trajets en taxi jaune incluent des champs indiquant les dates et heures de début et fin de trajet, les lieux de départ et d’arrivée, la distance des trajets, les tarifs détaillés, les types de tarifs, les types de paiement et le nombre de passagers signalé par le conducteur.

Volume et rétention

Ce jeu de données est stocké au format Parquet. Il y a environ 1,5 milliard de lignes (50 Go) en 2018.

Ce jeu de données contient les enregistrements historiques accumulés de 2009 à 2018. Vous pouvez utiliser les paramètres de paramétrage de notre SDK pour récupérer les données dans un intervalle de temps spécifique.

Emplacement de stockage

Ce jeu de données est stocké dans la région Azure USA Est. L’allocation de ressources de calcul dans la région USA Est est recommandée à des fins d’affinité.

Informations supplémentaires

Commission des services de taxis et de limousines de la ville de New York (en anglais)

Les données ont été collectées et fournies à la Commission des services de taxis et de limousines de la ville de New York (TLC) par des fournisseurs de technologie agréés dans le cadre du programme d’amélioration du trafic passagers et taxis (TPEP/LPEP). Les données sur les trajets n’ont pas été créées par la TLC et celle-ci ne fait aucune déclaration quant à l’exactitude de ces données.

Des informations supplémentaires sur les données d’enregistrement de trajet TLC sont disponibles ici et ici.

Remarques

MICROSOFT FOURNIT AZURE OPEN DATASETS “EN L’ÉTAT”. MICROSOFT N’OFFRE AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, DE GARANTIE NI DE CONDITIONS RELATIVES À VOTRE UTILISATION DES JEUX DE DONNÉES. DANS LA MESURE AUTORISÉE PAR VOTRE DROIT LOCAL, MICROSOFT DÉCLINE TOUTE RESPONSABILITÉ POUR TOUT DOMMAGE OU PERTES, Y COMPRIS LES DIRECTIVES, CONSEQUENTIELLES, SPÉCIALES, INDIRECTES OU PUNITIVES, RÉSULTANT DE VOTRE UTILISATION DES JEUX DE DONNÉES.

Ce jeu de données est fourni selon les conditions initiales par lesquelles Microsoft a reçu les données sources. Le jeu de données peut inclure des données provenant de Microsoft.

Access

Available inWhen to use
Azure Notebooks

Quickly explore the dataset with Jupyter notebooks hosted on Azure or your local machine.

Azure Databricks

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Azure Synapse

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Preview

vendorID tpepPickupDateTime tpepDropoffDateTime passengerCount tripDistance puLocationId doLocationId rateCodeId storeAndFwdFlag paymentType fareAmount extra mtaTax improvementSurcharge tipAmount tollsAmount totalAmount puYear puMonth
2 1/24/2088 12:25:39 AM 1/24/2088 7:28:25 AM 1 4.05 24 162 1 N 2 14.5 0 0.5 0.3 0 0 15.3 2088 1
2 1/24/2088 12:15:42 AM 1/24/2088 12:19:46 AM 1 0.63 41 166 1 N 2 4.5 0 0.5 0.3 0 0 5.3 2088 1
2 11/4/2084 12:32:24 PM 11/4/2084 12:47:41 PM 1 1.34 238 236 1 N 2 10 0 0.5 0.3 0 0 10.8 2084 11
2 11/4/2084 12:25:53 PM 11/4/2084 12:29:00 PM 1 0.32 238 238 1 N 2 4 0 0.5 0.3 0 0 4.8 2084 11
2 11/4/2084 12:08:33 PM 11/4/2084 12:22:24 PM 1 1.85 236 238 1 N 2 10 0 0.5 0.3 0 0 10.8 2084 11
2 11/4/2084 11:41:35 AM 11/4/2084 11:59:41 AM 1 1.65 68 237 1 N 2 12.5 0 0.5 0.3 0 0 13.3 2084 11
2 11/4/2084 11:27:28 AM 11/4/2084 11:39:52 AM 1 1.07 170 68 1 N 2 9 0 0.5 0.3 0 0 9.8 2084 11
2 11/4/2084 11:19:06 AM 11/4/2084 11:26:44 AM 1 1.3 107 170 1 N 2 7.5 0 0.5 0.3 0 0 8.3 2084 11
2 11/4/2084 11:02:59 AM 11/4/2084 11:15:51 AM 1 1.85 113 137 1 N 2 10 0 0.5 0.3 0 0 10.8 2084 11
2 11/4/2084 10:46:05 AM 11/4/2084 10:50:09 AM 1 0.62 231 231 1 N 2 4.5 0 0.5 0.3 0 0 5.3 2084 11
Name Data type Unique Values (sample) Description
doLocationId string 265 236
161

Zone de taxi TLC où le compteur a été arrêté.

endLat double 961,994 41.366138
40.75
endLon double 1,144,935 -73.137393
-73.9824
extra double 877 0.5
1.0

Frais et suppléments divers. Actuellement, cela n’inclut que les frais de 0,50 $ et de 1 $ pour les heure de pointe et de nuit.

fareAmount double 18,935 6.5
4.5

Tarif temps-distance calculé par le compteur.

improvementSurcharge string 60 0.3
0

Supplément pour l’amélioration de 0,30 $ évalué sur les trajets hélés à une station. Le supplément pour amélioration a commencé à être perçu en 2015.

mtaTax double 360 0.5
-0.5

Taxe de 0,50 USD MTA déclenchée automatiquement en fonction du tarif affiché au compteur.

passengerCount int 64 1
2

Nombre de passagers dans le véhicule. Cette valeur est entrée par le conducteur.

paymentType string 6,282 CSH
CRD

Code numérique indiquant comment le passager a payé le trajet.

1= Carte bancaire;

2= Espèces;

3= Aucun frais;

4= Différend;

5= Inconnu;

6= Trajet annulé.

puLocationId string 266 237
161

Zone de taxi TLC où le compteur a été lancé.

puMonth int 12 3
5
puYear int 29 2012
2011
rateCodeId int 56 1
2

Code tarifaire final en vigueur à la fin du trajet.

1= Tarif standard;

2= JFK;

3= Newark;

4= Nassau ou Westchester;

5= Tarif négocié;

6= Trajet à plusieurs.

startLat double 833,016 41.366138
40.7741
startLon double 957,428 -73.137393
-73.9824
storeAndFwdFlag string 8 N
0

Cet indicateur indique si l’enregistrement de trajet a été conservé dans la mémoire du véhicule avant son envoi au fournisseur, également appelé « stocker et transférer », car le véhicule n’était pas connecté au serveur.

Y=Stocker et transférer le trajet;

N=Ne pas stocker et transférer le trajet.

tipAmount double 12,121 1.0
2.0

Ce champ est automatiquement renseigné pour les pourboires en carte bancaire. Les pourboires en espèces ne sont pas inclus.

tollsAmount double 6,634 5.33
4.8

Montant total de tous les péages payés lors du trajet.

totalAmount double 39,707 7.0
7.8

Montant total facturé aux passagers. N’inclut pas les pourboires.

tpepDropoffDateTime timestamp 290,185,010 2009-11-01 01:55:00
2010-04-09 21:08:00

Date et heure auxquelles le compteur a été arrêté.

tpepPickupDateTime timestamp 289,948,585 2009-11-01 01:05:00
2011-11-06 01:05:00

Date et heure auxquelles le compteur a été lancé.

tripDistance double 14,003 1.0
0.9

Distance parcourue en miles indiquée par le compteur.

vendorID string 7 VTS
CMT

Code indiquant le fournisseur TPEP qui a fourni l’enregistrement.

1= Creative Mobile Technologies, LLC;

2= VeriFone Inc.

Select your preferred service:

Azure Notebooks

Azure Databricks

Azure Synapse

Azure Notebooks

Package: Language: Python Python
In [1]:
# This is a package in preview.
from azureml.opendatasets import NycTlcYellow

from datetime import datetime
from dateutil import parser


end_date = parser.parse('2018-06-06')
start_date = parser.parse('2018-05-01')
nyc_tlc = NycTlcYellow(start_date=start_date, end_date=end_date)
nyc_tlc_df = nyc_tlc.to_pandas_dataframe()
ActivityStarted, to_pandas_dataframe ActivityStarted, to_pandas_dataframe_in_worker Target paths: ['/puYear=2018/puMonth=5/', '/puYear=2018/puMonth=6/'] Looking for parquet files... Reading them into Pandas dataframe... Reading yellow/puYear=2018/puMonth=5/part-00087-tid-4962944523873006564-6d1b261c-5f96-4819-ba4d-a034cf2bc6ec-12005.c000.snappy.parquet under container nyctlc Reading yellow/puYear=2018/puMonth=6/part-00171-tid-4962944523873006564-6d1b261c-5f96-4819-ba4d-a034cf2bc6ec-12089.c000.snappy.parquet under container nyctlc Done. ActivityCompleted: Activity=to_pandas_dataframe_in_worker, HowEnded=Success, Duration=137433.5 [ms] ActivityCompleted: Activity=to_pandas_dataframe, HowEnded=Success, Duration=137510.05 [ms]
In [2]:
nyc_tlc_df.info()
<class 'pandas.core.frame.DataFrame'> Int64Index: 10695823 entries, 189 to 5673232 Data columns (total 21 columns): vendorID object tpepPickupDateTime datetime64[ns] tpepDropoffDateTime datetime64[ns] passengerCount int32 tripDistance float64 puLocationId object doLocationId object startLon float64 startLat float64 endLon float64 endLat float64 rateCodeId int32 storeAndFwdFlag object paymentType object fareAmount float64 extra float64 mtaTax float64 improvementSurcharge object tipAmount float64 tollsAmount float64 totalAmount float64 dtypes: datetime64[ns](2), float64(11), int32(2), object(6) memory usage: 1.7+ GB
In [1]:
# Pip install packages
import os, sys

!{sys.executable} -m pip install azure-storage-blob
!{sys.executable} -m pip install pyarrow
!{sys.executable} -m pip install pandas
In [2]:
# Azure storage access info
azure_storage_account_name = "azureopendatastorage"
azure_storage_sas_token = r""
container_name = "nyctlc"
folder_name = "yellow"
In [3]:
from azure.storage.blob import BlockBlobServicefrom azure.storage.blob import BlobServiceClient, BlobClient, ContainerClient

if azure_storage_account_name is None or azure_storage_sas_token is None:
    raise Exception(
        "Provide your specific name and key for your Azure Storage account--see the Prerequisites section earlier.")

print('Looking for the first parquet under the folder ' +
      folder_name + ' in container "' + container_name + '"...')
container_url = f"https://{azure_storage_account_name}.blob.core.windows.net/"
blob_service_client = BlobServiceClient(
    container_url, azure_storage_sas_token if azure_storage_sas_token else None)

container_client = blob_service_client.get_container_client(container_name)
blobs = container_client.list_blobs(folder_name)
sorted_blobs = sorted(list(blobs), key=lambda e: e.name, reverse=True)
targetBlobName = ''
for blob in sorted_blobs:
    if blob.name.startswith(folder_name) and blob.name.endswith('.parquet'):
        targetBlobName = blob.name
        break

print('Target blob to download: ' + targetBlobName)
_, filename = os.path.split(targetBlobName)
blob_client = container_client.get_blob_client(targetBlobName)
with open(filename, 'wb') as local_file:
    blob_client.download_blob().download_to_stream(local_file)
In [4]:
# Read the parquet file into Pandas data frame
import pandas as pd

print('Reading the parquet file into Pandas data frame')
df = pd.read_parquet(filename)
In [5]:
# you can add your filter at below
print('Loaded as a Pandas data frame: ')
df
In [6]:
 

Azure Databricks

Package: Language: Python Python
In [1]:
# This is a package in preview.
# You need to pip install azureml-opendatasets in Databricks cluster. https://docs.microsoft.com/en-us/azure/data-explorer/connect-from-databricks#install-the-python-library-on-your-azure-databricks-cluster
from azureml.opendatasets import NycTlcYellow

from datetime import datetime
from dateutil import parser


end_date = parser.parse('2018-06-06')
start_date = parser.parse('2018-05-01')
nyc_tlc = NycTlcYellow(start_date=start_date, end_date=end_date)
nyc_tlc_df = nyc_tlc.to_spark_dataframe()
ActivityStarted, to_spark_dataframe ActivityStarted, to_spark_dataframe_in_worker ActivityCompleted: Activity=to_spark_dataframe_in_worker, HowEnded=Success, Duration=91957.61 [ms] ActivityCompleted: Activity=to_spark_dataframe, HowEnded=Success, Duration=91961.14 [ms]
In [2]:
display(nyc_tlc_df.limit(5))
vendorIDtpepPickupDateTimetpepDropoffDateTimepassengerCounttripDistancepuLocationIddoLocationIdstartLonstartLatendLonendLatrateCodeIdstoreAndFwdFlagpaymentTypefareAmountextramtaTaximprovementSurchargetipAmounttollsAmounttotalAmountpuYearpuMonth
22018-06-05T23:37:15.000+00002018-06-06T00:15:57.000+0000121.65132142nullnullnullnull2N152.00.00.50.38.05.7666.5620186
22018-05-31T18:04:19.000+00002018-06-01T17:56:15.000+000019.95230138nullnullnullnull1N135.01.00.50.38.515.7651.0720186
22018-05-31T18:58:20.000+00002018-06-01T18:55:28.000+000021.9148239nullnullnullnull1N212.01.00.50.30.00.013.820186
22018-05-31T16:45:53.000+00002018-06-01T16:06:26.000+000062.79230125nullnullnullnull1N214.01.00.50.30.00.015.820186
22018-05-31T15:08:53.000+00002018-06-01T14:21:29.000+000011.723674nullnullnullnull1N110.01.00.50.32.360.014.1620186
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "nyctlc"
blob_relative_path = "yellow"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))

Azure Synapse

Package: Language: Python Python
In [31]:
# This is a package in preview.
from azureml.opendatasets import NycTlcYellow

from datetime import datetime
from dateutil import parser


end_date = parser.parse('2018-06-06')
start_date = parser.parse('2018-05-01')
nyc_tlc = NycTlcYellow(start_date=start_date, end_date=end_date)
nyc_tlc_df = nyc_tlc.to_spark_dataframe()
In [32]:
# Display top 5 rows
display(nyc_tlc_df.limit(5))
Out[32]:
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "nyctlc"
blob_relative_path = "yellow"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))