Les modèles de démarrage rapide Azure sont actuellement disponibles en anglais.
This template creates an Azure Machine Learning service.
Ce modèle ARM (Azure Resource Manager) a été créé par un membre de la communauté et non par Microsoft. Chaque modèle ARM vous est concédé sous licence sous un contrat de licence par son propriétaire, et non par Microsoft. Microsoft ne peut pas être tenu responsable des modèles ARM fournis et concédés sous licence par les membres de la communauté, ni ne vérifie leur sécurité, leur compatibilité ou leurs performances. Les modèles ARM de la communauté ne sont pris en charge par aucun programme ou service de support Microsoft. Ils sont rendus disponibles EN L'ÉTAT sans garantie d'aucune sorte.
Paramètres
Nom du paramètre | Description |
---|---|
webserviceName | The name of the Azure Machine Learning Web Service. This resource will be created in the same resource group as the workspace. |
workspaceName | The name of the Azure Machine Learning Workspace. |
location | The location of the Azure Machine Learning Workspace. |
environmentName | Name of Azure Machine Learning Environment for deployment. See https://docs.microsoft.com/en-us/azure/machine-learning/how-to-use-environments and https://docs.microsoft.com/en-us/azure/machine-learning/resource-curated-environments . |
environmentVersion | Version of Azure Machine Learning Environment for deployment. |
cpu | The default number of CPU cores to allocate for this Webservice. Can be a decimal. |
cpuLimit | The max number of CPU cores this Webservice is allowed to use. Can be a decimal. |
gpu | The number of gpu cores to allocate for this Webservice |
memoryInGB | The amount of memory (in GB) to allocate for this Webservice. Can be a decimal. |
driverProgram | Relative path of a file from storage account that contains the code to run for service. |
models | Details of the models to be deployed. Each model must have the following properties: 'name'(name of the model), 'path'(relative path of a file from storage account linked to Workspace), 'mimeType'(MIME type of Model content. For more details about MIME type, please open https://www.iana.org/assignments/media-types/media-types.xhtml), 'framework'(framework of the model, use Custom if unsure) and 'frameworkVersion'(framework version of the model). |
authEnabled | Whether or not to enable key auth for this Webservice. |
tokenAuthEnabled | Whether or not to enable token auth for this Webservice. Only applicable when deploying to AKS. |
primaryKey | A primary auth key to use for this Webservice. |
secondaryKey | A secondary auth key to use for this Webservice. |
scoringTimeoutMilliSeconds | A timeout to enforce for scoring calls to this Webservice. |
appInsightsEnabled | Whether or not to enable AppInsights for this Webservice. |
Utiliser le modèle
PowerShell
New-AzResourceGroup -Name <resource-group-name> -Location <resource-group-location> #use this command when you need to create a new resource group for your deploymentInstaller et configurer Azure PowerShell
New-AzResourceGroupDeployment -ResourceGroupName <resource-group-name> -TemplateUri https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/quickstarts/microsoft.machinelearningservices/machine-learning-service-create-aci/azuredeploy.json
Ligne de commande
az group create --name <resource-group-name> --location <resource-group-location> #use this command when you need to create a new resource group for your deploymentInstaller et configurer l'interface de ligne de commande multiplateforme Azure
az group deployment create --resource-group <my-resource-group> --template-uri https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/quickstarts/microsoft.machinelearningservices/machine-learning-service-create-aci/azuredeploy.json