Omitir navegación

Public Holidays

Public Holidays

Datos sobre los días festivos de todo el mundo procedentes del paquete PyPI holidays y de Wikipedia, que cubren 38 países o regiones desde 1970 hasta 2099.

Cada fila indica la información de día festivo para una fecha y un país o región específicos y si la mayoría de las personas tienen tiempo libre remunerado.

Volumen y retención

Este conjunto de datos se almacena en formato Parquet. Es una instantánea con información de los días festivos desde el 01-01-1970 hasta el 01-01-2099. El tamaño de los datos es de unos 500 KB.

Ubicación de almacenamiento

Este conjunto de datos se almacena en la región Este de EE. UU. de Azure. Se recomienda asignar recursos de proceso de la misma región por afinidad.

Información adicional

Este conjunto de datos combina datos de Wikipedia (WikiMedia Foundation Inc) y del paquete PyPI holidays.

El conjunto de datos combinado se proporciona bajo los términos de la licencia Attribution-ShareAlike 3.0 Unported de Creative Commons.

Envíe un correo electrónico a la dirección si tiene alguna duda sobre el origen de los datos.

Notificaciones

MICROSOFT PROPORCIONA AZURE OPEN DATASETS “TAL CUAL”. MICROSOFT NO OFRECE NINGUNA GARANTÍA, EXPRESA O IMPLÍCITA, NI CONDICIÓN CON RESPECTO AL USO QUE USTED HAGA DE LOS CONJUNTOS DE DATOS. EN LA MEDIDA EN LA QUE LO PERMITA SU LEGISLACIÓN LOCAL, MICROSOFT DECLINA TODA RESPONSABILIDAD POR POSIBLES DAÑOS O PÉRDIDAS, INCLUIDOS LOS DAÑOS DIRECTOS, CONSECUENCIALES, ESPECIALES, INDIRECTOS, INCIDENTALES O PUNITIVOS, QUE RESULTEN DE SU USO DE LOS CONJUNTOS DE DATOS.

Este conjunto de datos se proporciona bajo los términos originales con los que Microsoft recibió los datos de origen. El conjunto de datos puede incluir datos procedentes de Microsoft.

Access

Available inWhen to use
Azure Notebooks

Quickly explore the dataset with Jupyter notebooks hosted on Azure or your local machine.

Azure Databricks

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Azure Synapse

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Preview

countryOrRegion holidayName normalizeHolidayName countryRegionCode date
Norway Søndag Søndag NO 12/28/2098 12:00:00 AM
Sweden Söndag Söndag SE 12/28/2098 12:00:00 AM
Australia Boxing Day Boxing Day AU 12/26/2098 12:00:00 AM
Hungary Karácsony másnapja Karácsony másnapja HU 12/26/2098 12:00:00 AM
Austria Stefanitag Stefanitag AT 12/26/2098 12:00:00 AM
Canada Boxing Day Boxing Day CA 12/26/2098 12:00:00 AM
Croatia Sveti Stjepan Sveti Stjepan HR 12/26/2098 12:00:00 AM
Czech 2. svátek vánoční 2. svátek vánoční CZ 12/26/2098 12:00:00 AM
Denmark Anden juledag Anden juledag DK 12/26/2098 12:00:00 AM
England Boxing Day Boxing Day null 12/26/2098 12:00:00 AM
Name Data type Unique Values (sample) Description
countryOrRegion string 38 Sweden
Norway

Nombre completo del país o la región.

countryRegionCode string 35 SE
NO

El código de país o región sigue el formato que se indica aquí.

date timestamp 20,665 2037-01-01 00:00:00
2032-01-01 00:00:00

Fecha del día festivo.

holidayName string 483 Søndag
Söndag

Nombre completo del día festivo.

isPaidTimeOff boolean 3 True

Indica si la mayoría de la gente tiene tiempo libre remunerado en esta fecha (solo disponible para Estados Unidos, Gran Bretaña y la India ahora). Si el valor es nulo, significa que se desconoce.

normalizeHolidayName string 438 Søndag
Söndag

Nombre normalizado del día festivo.

Select your preferred service:

Azure Notebooks

Azure Databricks

Azure Synapse

Azure Notebooks

Package: Language: Python Python
In [1]:
# This is a package in preview.
from azureml.opendatasets import PublicHolidays

from datetime import datetime
from dateutil import parser
from dateutil.relativedelta import relativedelta


end_date = datetime.today()
start_date = datetime.today() - relativedelta(months=1)
hol = PublicHolidays(start_date=start_date, end_date=end_date)
hol_df = hol.to_pandas_dataframe()
ActivityStarted, to_pandas_dataframe ActivityStarted, to_pandas_dataframe_in_worker Looking for parquet files... Reading them into Pandas dataframe... Reading Processed/part-00000-tid-8575944798531137721-7b2fbd47-2ae5-45fd-b8b5-daa663d33177-649-c000.snappy.parquet under container holidaydatacontainer Done. ActivityCompleted: Activity=to_pandas_dataframe_in_worker, HowEnded=Success, Duration=955.3 [ms] ActivityCompleted: Activity=to_pandas_dataframe, HowEnded=Success, Duration=958.23 [ms]
In [2]:
hol_df.info()
<class 'pandas.core.frame.DataFrame'> Int64Index: 34 entries, 25706 to 25739 Data columns (total 6 columns): countryOrRegion 34 non-null object holidayName 34 non-null object normalizeHolidayName 34 non-null object isPaidTimeOff 1 non-null object countryRegionCode 34 non-null object date 34 non-null datetime64[ns] dtypes: datetime64[ns](1), object(5) memory usage: 1.9+ KB
In [1]:
# Pip install packages
import os, sys

!{sys.executable} -m pip install azure-storage-blob
!{sys.executable} -m pip install pyarrow
!{sys.executable} -m pip install pandas
In [2]:
# Azure storage access info
azure_storage_account_name = "azureopendatastorage"
azure_storage_sas_token = r""
container_name = "holidaydatacontainer"
folder_name = "Processed"
In [3]:
from azure.storage.blob import BlockBlobServicefrom azure.storage.blob import BlobServiceClient, BlobClient, ContainerClient

if azure_storage_account_name is None or azure_storage_sas_token is None:
    raise Exception(
        "Provide your specific name and key for your Azure Storage account--see the Prerequisites section earlier.")

print('Looking for the first parquet under the folder ' +
      folder_name + ' in container "' + container_name + '"...')
container_url = f"https://{azure_storage_account_name}.blob.core.windows.net/"
blob_service_client = BlobServiceClient(
    container_url, azure_storage_sas_token if azure_storage_sas_token else None)

container_client = blob_service_client.get_container_client(container_name)
blobs = container_client.list_blobs(folder_name)
sorted_blobs = sorted(list(blobs), key=lambda e: e.name, reverse=True)
targetBlobName = ''
for blob in sorted_blobs:
    if blob.name.startswith(folder_name) and blob.name.endswith('.parquet'):
        targetBlobName = blob.name
        break

print('Target blob to download: ' + targetBlobName)
_, filename = os.path.split(targetBlobName)
blob_client = container_client.get_blob_client(targetBlobName)
with open(filename, 'wb') as local_file:
    blob_client.download_blob().download_to_stream(local_file)
In [4]:
# Read the parquet file into Pandas data frame
import pandas as pd

print('Reading the parquet file into Pandas data frame')
df = pd.read_parquet(filename)
In [5]:
# you can add your filter at below
print('Loaded as a Pandas data frame: ')
df
In [6]:
 

Azure Databricks

Package: Language: Python Python
In [1]:
# This is a package in preview.
# You need to pip install azureml-opendatasets in Databricks cluster. https://docs.microsoft.com/en-us/azure/data-explorer/connect-from-databricks#install-the-python-library-on-your-azure-databricks-cluster
from azureml.opendatasets import PublicHolidays

from datetime import datetime
from dateutil import parser
from dateutil.relativedelta import relativedelta


end_date = datetime.today()
start_date = datetime.today() - relativedelta(months=1)
hol = PublicHolidays(start_date=start_date, end_date=end_date)
hol_df = hol.to_spark_dataframe()
ActivityStarted, to_spark_dataframe ActivityStarted, to_spark_dataframe_in_worker ActivityCompleted: Activity=to_spark_dataframe_in_worker, HowEnded=Success, Duration=2221.62 [ms] ActivityCompleted: Activity=to_spark_dataframe, HowEnded=Success, Duration=2223.36 [ms]
In [2]:
display(hol_df.limit(5))
countryOrRegionholidayNamenormalizeHolidayNameisPaidTimeOffcountryRegionCodedate
NorwaySøndagSøndagnullNO2019-06-16T00:00:00.000+0000
South AfricaYouth DayYouth DaynullZA2019-06-16T00:00:00.000+0000
SwedenSöndagSöndagnullSE2019-06-16T00:00:00.000+0000
UkraineТрійцяТрійцяnullUA2019-06-16T00:00:00.000+0000
ArgentinaDía Pase a la Inmortalidad del General Martín Miguel de Güemes [Day Pass to the Immortality of General Martín Miguel de Güemes]Día Pase a la Inmortalidad del General Martín Miguel de Güemes [Day Pass to the Immortality of General Martín Miguel de Güemes]nullAR2019-06-17T00:00:00.000+0000
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "holidaydatacontainer"
blob_relative_path = "Processed"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))

Azure Synapse

Package: Language: Python Python
In [33]:
# This is a package in preview.
from azureml.opendatasets import PublicHolidays

from datetime import datetime
from dateutil import parser
from dateutil.relativedelta import relativedelta


end_date = datetime.today()
start_date = datetime.today() - relativedelta(months=1)
hol = PublicHolidays(start_date=start_date, end_date=end_date)
hol_df = hol.to_spark_dataframe()
In [34]:
# Display top 5 rows
display(hol_df.limit(5))
Out[34]:
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "holidaydatacontainer"
blob_relative_path = "Processed"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))