Omitir navegación

Boston Safety Data

Boston 311 CRM Case Management City Services Public Safety

Llamadas al número 311 en la ciudad de Boston.

Consulte este vínculo para obtener más información sobre BOS:311.

Volumen y retención

Este conjunto de datos se almacena en formato Parquet. Se actualiza a diario y contiene unas 100 000 filas (10 MB) en total desde 2019.

Este conjunto de datos contiene registros históricos acumulados desde 2011 hasta la actualidad. Puede usar la configuración de parámetros de nuestro SDK para recuperar los datos de un intervalo de tiempo específico.

Ubicación de almacenamiento

Este conjunto de datos se almacena en la región Este de EE. UU. de Azure. Se recomienda asignar recursos de proceso de la misma región por afinidad.

Información adicional

Este conjunto de datos se alimenta con los datos de la administración pública de la ciudad de Boston. Encontrará información más detallada aquí. Consulte Open Data Commons Public Domain Dedication and License (ODC PDDL) para obtener la licencia de uso de este conjunto de datos.

Notificaciones

MICROSOFT PROPORCIONA AZURE OPEN DATASETS “TAL CUAL”. MICROSOFT NO OFRECE NINGUNA GARANTÍA, EXPRESA O IMPLÍCITA, NI CONDICIÓN CON RESPECTO AL USO QUE USTED HAGA DE LOS CONJUNTOS DE DATOS. EN LA MEDIDA EN LA QUE LO PERMITA SU LEGISLACIÓN LOCAL, MICROSOFT DECLINA TODA RESPONSABILIDAD POR POSIBLES DAÑOS O PÉRDIDAS, INCLUIDOS LOS DAÑOS DIRECTOS, CONSECUENCIALES, ESPECIALES, INDIRECTOS, INCIDENTALES O PUNITIVOS, QUE RESULTEN DE SU USO DE LOS CONJUNTOS DE DATOS.

Este conjunto de datos se proporciona bajo los términos originales con los que Microsoft recibió los datos de origen. El conjunto de datos puede incluir datos procedentes de Microsoft.

Access

Available inWhen to use
Azure Notebooks

Quickly explore the dataset with Jupyter notebooks hosted on Azure or your local machine.

Azure Databricks

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Azure Synapse

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Preview

dataType dataSubtype dateTime category subcategory status address latitude longitude source extendedProperties
Safety 311_All 2/13/2021 11:55:07 PM Code Enforcement Unshoveled Sidewalk Open 50 East St Dorchester MA 02122 42.3073 -71.0609 Citizens Connect App
Safety 311_All 2/13/2021 11:53:19 PM Enforcement & Abandoned Vehicles Parking Enforcement Open 148-150 Meridian St East Boston MA 02128 42.374 -71.0393 Citizens Connect App
Safety 311_All 2/13/2021 11:50:52 PM Graffiti Graffiti Removal Open 50 Union St Boston MA 02108 42.3609 -71.0571 Citizens Connect App
Safety 311_All 2/13/2021 11:48:21 PM Highway Maintenance Empty Litter Basket Closed INTERSECTION of E Stoughton St & Albany St Roxbury MA 42.3594 -71.0587 City Worker App
Safety 311_All 2/13/2021 11:31:59 PM Graffiti Graffiti Removal Open INTERSECTION of Mechanic St & Hanover St Boston MA 42.3594 -71.0587 Citizens Connect App
Safety 311_All 2/13/2021 11:27:37 PM Highway Maintenance PWD Graffiti Open INTERSECTION of Claremont Park & Claremont St Roxbury MA 42.3594 -71.0587 Citizens Connect App
Safety 311_All 2/13/2021 11:16:00 PM Signs & Signals Traffic Signal Inspection Open INTERSECTION of Truman Pkwy & Fairmount Ave Hyde Park MA 42.3594 -71.0587 Constituent Call
Safety 311_All 2/13/2021 10:58:19 PM Enforcement & Abandoned Vehicles Parking Enforcement Open 204-206 Marion St East Boston MA 02128 42.3754 -71.0345 Citizens Connect App
Safety 311_All 2/13/2021 10:34:16 PM Highway Maintenance PWD Graffiti Open INTERSECTION of Claremont Park & Claremont St Roxbury MA 42.3594 -71.0587 Citizens Connect App
Safety 311_All 2/13/2021 10:32:00 PM Enforcement & Abandoned Vehicles Parking Enforcement Open 1 Nassau St Boston MA 02111 42.3486 -71.0629 Constituent Call
Name Data type Unique Values (sample) Description
address string 142,008 \" \"
1 City Hall Plz Boston MA 02108

Ubicación.

category string 54 Street Cleaning
Sanitation

Motivo de la solicitud de servicio.

dataSubtype string 1 311_All

“311_All”

dataType string 1 Safety

“Safety”

dateTime timestamp 1,719,808 2015-07-23 10:51:00
2015-07-23 10:47:00

Fecha y hora de apertura de la solicitud de servicio.

latitude double 1,622 42.3594
42.3603

Este es el valor de la latitud. Las líneas de la latitud son paralelas al ecuador.

longitude double 1,806 -71.0587
-71.0583

Este es el valor de la longitud. Las líneas de la longitud son perpendiculares a las líneas de la latitud y todas pasan por los dos polos.

source string 7 Constituent Call
Citizens Connect App

Fuente original del caso.

status string 2 Closed
Open

Estado del caso.

subcategory string 208 Parking Enforcement
Requests for Street Cleaning

Tipo de solicitud de servicio.

Select your preferred service:

Azure Notebooks

Azure Databricks

Azure Synapse

Azure Notebooks

Package: Language: Python Python
In [1]:
# This is a package in preview.
from azureml.opendatasets import BostonSafety

from datetime import datetime
from dateutil import parser


end_date = parser.parse('2016-01-01')
start_date = parser.parse('2015-05-01')
safety = BostonSafety(start_date=start_date, end_date=end_date)
safety = safety.to_pandas_dataframe()
ActivityStarted, to_pandas_dataframe ActivityStarted, to_pandas_dataframe_in_worker Looking for parquet files... Reading them into Pandas dataframe... Reading Safety/Release/city=Boston/part-00196-tid-845600952581210110-a4f62588-4996-42d1-bc79-23a9b4635c63-447039.c000.snappy.parquet under container citydatacontainer Done. ActivityCompleted: Activity=to_pandas_dataframe_in_worker, HowEnded=Success, Duration=2213.69 [ms] ActivityCompleted: Activity=to_pandas_dataframe, HowEnded=Success, Duration=2216.01 [ms]
In [2]:
safety.info()
<class 'pandas.core.frame.DataFrame'> Int64Index: 1 entries, 56262 to 56262 Data columns (total 11 columns): dataType 1 non-null object dataSubtype 1 non-null object dateTime 1 non-null datetime64[ns] category 1 non-null object subcategory 1 non-null object status 1 non-null object address 1 non-null object latitude 1 non-null float64 longitude 1 non-null float64 source 1 non-null object extendedProperties 0 non-null object dtypes: datetime64[ns](1), float64(2), object(8) memory usage: 96.0+ bytes
In [1]:
# Pip install packages
import os, sys

!{sys.executable} -m pip install azure-storage-blob
!{sys.executable} -m pip install pyarrow
!{sys.executable} -m pip install pandas
In [2]:
# Azure storage access info
azure_storage_account_name = "azureopendatastorage"
azure_storage_sas_token = r""
container_name = "citydatacontainer"
folder_name = "Safety/Release/city=Boston"
In [3]:
from azure.storage.blob import BlockBlobServicefrom azure.storage.blob import BlobServiceClient, BlobClient, ContainerClient

if azure_storage_account_name is None or azure_storage_sas_token is None:
    raise Exception(
        "Provide your specific name and key for your Azure Storage account--see the Prerequisites section earlier.")

print('Looking for the first parquet under the folder ' +
      folder_name + ' in container "' + container_name + '"...')
container_url = f"https://{azure_storage_account_name}.blob.core.windows.net/"
blob_service_client = BlobServiceClient(
    container_url, azure_storage_sas_token if azure_storage_sas_token else None)

container_client = blob_service_client.get_container_client(container_name)
blobs = container_client.list_blobs(folder_name)
sorted_blobs = sorted(list(blobs), key=lambda e: e.name, reverse=True)
targetBlobName = ''
for blob in sorted_blobs:
    if blob.name.startswith(folder_name) and blob.name.endswith('.parquet'):
        targetBlobName = blob.name
        break

print('Target blob to download: ' + targetBlobName)
_, filename = os.path.split(targetBlobName)
blob_client = container_client.get_blob_client(targetBlobName)
with open(filename, 'wb') as local_file:
    blob_client.download_blob().download_to_stream(local_file)
In [4]:
# Read the parquet file into Pandas data frame
import pandas as pd

print('Reading the parquet file into Pandas data frame')
df = pd.read_parquet(filename)
In [5]:
# you can add your filter at below
print('Loaded as a Pandas data frame: ')
df
In [6]:
 

Azure Databricks

Package: Language: Python Python
In [1]:
# This is a package in preview.
# You need to pip install azureml-opendatasets in Databricks cluster. https://docs.microsoft.com/en-us/azure/data-explorer/connect-from-databricks#install-the-python-library-on-your-azure-databricks-cluster
from azureml.opendatasets import BostonSafety

from datetime import datetime
from dateutil import parser


end_date = parser.parse('2016-01-01')
start_date = parser.parse('2015-05-01')
safety = BostonSafety(start_date=start_date, end_date=end_date)
safety = safety.to_spark_dataframe()
ActivityStarted, to_spark_dataframe ActivityStarted, to_spark_dataframe_in_worker ActivityCompleted: Activity=to_spark_dataframe_in_worker, HowEnded=Success, Duration=2380.02 [ms] ActivityCompleted: Activity=to_spark_dataframe, HowEnded=Success, Duration=2381.75 [ms]
In [2]:
display(safety)
dataTypedataSubtypedateTimecategorysubcategorystatusaddresslatitudelongitudesourceextendedProperties
Safety311_All2015-07-24T12:48:24.000+0000Call InquiryOCR Front Desk InteractionsClosed 42.3594-71.0587Constituent Callnull
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "citydatacontainer"
blob_relative_path = "Safety/Release/city=Boston"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))

Azure Synapse

Package: Language: Python Python
In [1]:
from azureml.opendatasets import BostonSafety

from datetime import datetime
from dateutil import parser


end_date = parser.parse('2016-01-01')
start_date = parser.parse('2015-05-01')
safety = BostonSafety(start_date=start_date, end_date=end_date)
safety = safety.to_spark_dataframe()
ActivityStarted, to_spark_dataframe ActivityStarted, to_spark_dataframe_in_worker ActivityCompleted: Activity=to_spark_dataframe_in_worker, HowEnded=Success, Duration=2380.02 [ms] ActivityCompleted: Activity=to_spark_dataframe, HowEnded=Success, Duration=2381.75 [ms]
In [2]:
display(safety)
dataTypedataSubtypedateTimecategorysubcategorystatusaddresslatitudelongitudesourceextendedProperties
Safety311_All2015-07-24T12:48:24.000+0000Call InquiryOCR Front Desk InteractionsClosed 42.3594-71.0587Constituent Callnull
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "citydatacontainer"
blob_relative_path = "Safety/Release/city=Boston"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))

City Safety

From the Urban Innovation Initiative at Microsoft Research, databricks notebook for analytics with safety data (311 and 911 call data) from major U.S. cities. Analyses show frequency distributions and geographic clustering of safety issues within cities.