Simulate all aspects of vehicle engineering cost-effectively and at scale with highly secure infrastructure.
Optimize products by enhancing existing simulations, including engineering, aerodynamic, and physics simulations, with Azure data analytics and machine learning tools.
Quickly test performance of sensors using advanced hardware like GPUs and autonomous driving software over billions of simulated miles.
How Azure HPC supports automotive engineering simulation workloads
The latest NV-series virtual machines (VMs) allow automotive designers to create prototypes remotely. This series supports graphics-intensive workloads that enhance the vehicle engineering process as engineers iterate new designs in the cloud.

NC-series VMs help automotive engineers optimize the design phase by rendering vehicle prototypes. Enhanced deep learning and computing paired with low latency and high-throughput network interfaces improves the engineering process.

H-series VMs are ideal for high-CPU and large-memory workloads for engineering and physics simulations of all kinds. Whether you’re working to automate crash-test or multiphysics simulations, the latest HB and HC VMs empower vehicle engineers to develop cost-effective, secure, tightly coupled HPC simulations.

Designed for deep-learning workloads, ND-series VMs provide secondary low latency, high-throughput infrastructure for optimized performance in training models. With larger GPU memory space, vehicle engineers can run parallel training jobs to enhance a vehicle’s sensors, controllers, actuators, and interaction with the physical world.

Aerodynamics
Reduce fuel consumption by exploring various aerodynamic shapes and materials in your own virtual wind tunnel. Azure supports a wide variety of open source and proprietary aerodynamic simulation software.
Learn about STAR-CCM+ on Azure
Crash test simulations
Cost-effectively simulate the crash behavior of individual car body components, component assemblies, and Body-in-White (BIW) testing by vehicle quarters or halves.
Learn more
Multiphysics simulation
Accurately simulate product behavior by calculating fluid forces, thermal effects, and structural integrity—in any combination—to achieve high-fidelity physics simulations on scalable, highly reliable, and secure Azure infrastructure.
Run ANSYS on Azure
Autonomous driving validation
Reduce design cycle sprint times by more rapidly iterating through re-simulation/re-compute, training, and perception and post-perception validation with a wide variety of CPU and GPU virtual machine configurations.
Learn more
Powerful infrastructure as a service (IaaS) solutions for automotive applications
- Choose from the wide variety of specialized Azure Virtual Machines (VMs) for your general purpose, compute optimized, and memory optimized workloads.
- Use HB-series and HC-series VMs—featuring industry-leading memory bandwidth, the latest processors, and RDMA networking—to efficiently scale tightly-coupled workloads to tens of thousands cores.
- Use a dedicated Cray supercomputer with an attached high-performance Cray ClusterStor storage in an Azure datacenter for extreme-scale HPC.
See how automotive customers are innovating with Azure HPC
"There are so many factors that are constantly changing and can affect race strategy: track temperature, tire performance, what the other drivers are doing. Simulation helps us quickly understand how to configure the car for a particular track."
Mark Everest, Information Systems Development Manager, Renault Sport Formula One Team

"Thanks to the cloud, we have found the right solution to the challenge of storage capacity and computing. We can now focus entirely on the development and safety of our technical solutions for automated and autonomous driving."
Adrian James, Head of Automated Driving Safety, Audi AG

"We can develop very efficiently using Microsoft tools and use pre-built Azure features for artificial intelligence"
Markus Kremer, Project Engineer, FEV Europe GmbH

Work with an Azure HPC industry partner



