Skip Navigation

Public Holidays

Public Holidays

Worldwide public holiday data sourced from PyPI holidays package and Wikipedia, covering 38 countries or regions from 1970 to 2099.

Each row indicates the holiday info for a specific date, country, and whether most people have paid time off.

Volume and Retention

This dataset is stored in Parquet format. It is a snapshot with holiday information from 1970-01-01 to 2099-01-01. The data size is about 500KB.

Storage Location

This dataset is stored in the East US Azure region. Allocating compute resources in East US is recommended for affinity.

Additional Information

This dataset combines data sourced from Wikipedia (WikiMedia Foundation Inc) and PyPI holidays package.

The combined dataset is provided under the Creative Commons Attribution-ShareAlike 3.0 Unported License.

Email if you have any questions about the data source.

Notices

MICROSOFT PROVIDES AZURE OPEN DATASETS ON AN “AS IS” BASIS. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, GUARANTEES OR CONDITIONS WITH RESPECT TO YOUR USE OF THE DATASETS. TO THE EXTENT PERMITTED UNDER YOUR LOCAL LAW, MICROSOFT DISCLAIMS ALL LIABILITY FOR ANY DAMAGES OR LOSSES, INCLUDING DIRECT, CONSEQUENTIAL, SPECIAL, INDIRECT, INCIDENTAL OR PUNITIVE, RESULTING FROM YOUR USE OF THE DATASETS.

This dataset is provided under the original terms that Microsoft received source data. The dataset may include data sourced from Microsoft.

Access

Available inWhen to use
Azure Notebooks

Quickly explore the dataset with Jupyter notebooks hosted on Azure or your local machine.

Azure Databricks

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Preview

countryOrRegion holidayName normalizeHolidayName countryRegionCode date
Norway Søndag Søndag NO 12/28/2098 12:00:00 AM
Sweden Söndag Söndag SE 12/28/2098 12:00:00 AM
Australia Boxing Day Boxing Day AU 12/26/2098 12:00:00 AM
Hungary Karácsony másnapja Karácsony másnapja HU 12/26/2098 12:00:00 AM
Austria Stefanitag Stefanitag AT 12/26/2098 12:00:00 AM
Canada Boxing Day Boxing Day CA 12/26/2098 12:00:00 AM
Croatia Sveti Stjepan Sveti Stjepan HR 12/26/2098 12:00:00 AM
Czech 2. svátek vánoční 2. svátek vánoční CZ 12/26/2098 12:00:00 AM
Denmark Anden juledag Anden juledag DK 12/26/2098 12:00:00 AM
England Boxing Day Boxing Day 12/26/2098 12:00:00 AM
Name Data type Unique Values (sample) Description
countryOrRegion string 38 Sweden
Norway

Country or region full name.

countryRegionCode string 35 SE
NO

Country or region code following the format here.

date timestamp 20,539 2060-12-25 00:00:00
2094-01-01 00:00:00

Date of the holiday.

holidayName string 479 Søndag
Söndag

Full name of the holiday.

isPaidTimeOff boolean 3 True

Indicate whether most people have paid time off on this date (only available for US, GB and India now). If it is NULL, it means unknown.

normalizeHolidayName string 436 Søndag
Söndag

Normalized name of the holiday.

Select your preferred service:

Azure Notebooks

Azure Databricks

Azure Notebooks

Package: Language: Python Python
In [1]:
# This is a package in preview.
from azureml.opendatasets import PublicHolidays

from datetime import datetime
from dateutil import parser
from dateutil.relativedelta import relativedelta


end_date = datetime.today()
start_date = datetime.today() - relativedelta(months=1)
hol = PublicHolidays(start_date=start_date, end_date=end_date)
hol_df = hol.to_pandas_dataframe()
ActivityStarted, to_pandas_dataframe ActivityStarted, to_pandas_dataframe_in_worker Looking for parquet files... Reading them into Pandas dataframe... Reading Processed/part-00000-tid-8575944798531137721-7b2fbd47-2ae5-45fd-b8b5-daa663d33177-649-c000.snappy.parquet under container holidaydatacontainer Done. ActivityCompleted: Activity=to_pandas_dataframe_in_worker, HowEnded=Success, Duration=955.3 [ms] ActivityCompleted: Activity=to_pandas_dataframe, HowEnded=Success, Duration=958.23 [ms]
In [2]:
hol_df.info()
<class 'pandas.core.frame.DataFrame'> Int64Index: 34 entries, 25706 to 25739 Data columns (total 6 columns): countryOrRegion 34 non-null object holidayName 34 non-null object normalizeHolidayName 34 non-null object isPaidTimeOff 1 non-null object countryRegionCode 34 non-null object date 34 non-null datetime64[ns] dtypes: datetime64[ns](1), object(5) memory usage: 1.9+ KB
# Pip install packages
import os, sys

!{sys.executable} -m pip install azure-storage
!{sys.executable} -m pip install pyarrow
!{sys.executable} -m pip install pandas

# COMMAND ----------

# Azure storage access info
azure_storage_account_name = "azureopendatastorage"
azure_storage_sas_token = r""
container_name = "holidaydatacontainer"
folder_name = "Processed"

# COMMAND ----------

from azure.storage.blob import BlockBlobService

if azure_storage_account_name is None or azure_storage_sas_token is None:
    raise Exception("Provide your specific name and key for your Azure Storage account--see the Prerequisites section earlier.")

print('Looking for the first parquet under the folder ' + folder_name + ' in container "' + container_name + '"...')
blob_service = BlockBlobService(account_name = azure_storage_account_name, sas_token = azure_storage_sas_token,)
blobs = blob_service.list_blobs(container_name)
sorted_blobs = sorted(list(blobs), key=lambda e: e.name, reverse=True)
targetBlobName=''
for blob in sorted_blobs:
    if blob.name.startswith(folder_name) and blob.name.endswith('.parquet'):
        targetBlobName = blob.name
        break

print('Target blob to download: ' + targetBlobName)
_, filename = os.path.split(targetBlobName)
parquet_file=blob_service.get_blob_to_path(container_name, targetBlobName, filename)

# COMMAND ----------

# Read the local parquet file into Pandas data frame
import pyarrow.parquet as pq
import pandas as pd

appended_df = []
print('Reading the local parquet file into Pandas data frame')
df = pq.read_table(filename).to_pandas()

# COMMAND ----------

# you can add your filter at below
print('Loaded as a Pandas data frame: ')
df

# COMMAND ----------


Azure Databricks

Package: Language: Python Python
In [1]:
# This is a package in preview.
# You need to pip install azureml-opendatasets in Databricks cluster. https://docs.microsoft.com/en-us/azure/data-explorer/connect-from-databricks#install-the-python-library-on-your-azure-databricks-cluster
from azureml.opendatasets import PublicHolidays

from datetime import datetime
from dateutil import parser
from dateutil.relativedelta import relativedelta


end_date = datetime.today()
start_date = datetime.today() - relativedelta(months=1)
hol = PublicHolidays(start_date=start_date, end_date=end_date)
hol_df = hol.to_spark_dataframe()
ActivityStarted, to_spark_dataframe ActivityStarted, to_spark_dataframe_in_worker ActivityCompleted: Activity=to_spark_dataframe_in_worker, HowEnded=Success, Duration=2221.62 [ms] ActivityCompleted: Activity=to_spark_dataframe, HowEnded=Success, Duration=2223.36 [ms]
In [2]:
display(hol_df.limit(5))
countryOrRegionholidayNamenormalizeHolidayNameisPaidTimeOffcountryRegionCodedate
NorwaySøndagSøndagnullNO2019-06-16T00:00:00.000+0000
South AfricaYouth DayYouth DaynullZA2019-06-16T00:00:00.000+0000
SwedenSöndagSöndagnullSE2019-06-16T00:00:00.000+0000
UkraineТрійцяТрійцяnullUA2019-06-16T00:00:00.000+0000
ArgentinaDía Pase a la Inmortalidad del General Martín Miguel de Güemes [Day Pass to the Immortality of General Martín Miguel de Güemes]Día Pase a la Inmortalidad del General Martín Miguel de Güemes [Day Pass to the Immortality of General Martín Miguel de Güemes]nullAR2019-06-17T00:00:00.000+0000
# Databricks notebook source
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "holidaydatacontainer"
blob_relative_path = "Processed"
blob_sas_token = r""

# COMMAND ----------

# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)

# COMMAND ----------

# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')

# COMMAND ----------

# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))