Skip navigation

Quality assurance

Quality assurance systems allow businesses to prevent defects throughout their processes of delivering goods or services to customers. Building such a system that collects data and identifies potential problems along a pipeline can provide enormous advantages. For example, in digital manufacturing, quality assurance across the assembly line is imperative. Identifying slowdowns and potential failures before they occur rather than after they are detected can help companies reduce the cost of scrap and rework, while improving productivity.

This solution shows how to predict failures using the example of manufacturing pipelines (assembly lines). This is done by leveraging test systems already in place and failure data, specifically looking at returns and functional failures at the end of the assembly line. By combining these with domain knowledge and root cause analysis within a modular design that encapsulates the main processing steps, we provide a generic advanced analytics solution that uses machine learning to predict failures before they happen. Early prediction of future failures allows for less expensive repairs or even discarding, which is usually more cost efficient than going through recall and warranty costs.

Quality assuranceQuality assurance systems allow businesses to prevent defects throughout their processes of delivering goods or services to customers. Building such a system that collects data and identifies potential problems along a pipeline can provide enormous advantages. For example, in digital manufacturing, quality assurance across the assembly line is imperative. Identifying slowdowns and potential failures before they occur rather than after they are detected can help companies reduce the cost of scrap and rework, while improving productivity.

Disclaimer

©2017 Microsoft Corporation. All rights reserved. This information is provided “as is” and may change without notice. Microsoft makes no warranties, express or implied, with respect to the information provided here. Third-party data was used to generate the solution. You are responsible for respecting the rights of others, including procuring and complying with relevant licences in order to create similar datasets.

Quality assuranceQuality assurance systems allow businesses to prevent defects throughout their processes of delivering goods or services to customers. Building such a system that collects data and identifies potential problems along a pipeline can provide enormous advantages. For example, in digital manufacturing, quality assurance across the assembly line is imperative. Identifying slowdowns and potential failures before they occur rather than after they are detected can help companies reduce the cost of scrap and rework, while improving productivity.

Related solution architectures

Predictive maintenanceThis Predictive Maintenance solution monitors aircraft and predicts the remaining useful life of aircraft engine components.

Predictive maintenance

This Predictive Maintenance solution monitors aircraft and predicts the remaining useful life of aircraft engine components.

Anomaly Detection in Real-time Data StreamsCortana Intelligence IT Anomaly Insights solution helps IT departments within large organizations quickly detect and fix issues based on underlying health metrics from IT infrastructure (CPU, Memory, etc.), services (Timeouts, SLA variations, Brownouts, etc.), and other key performance indicators (KPIs) (Order backlog, Login and Payment failures, etc.) in an automated and scalable manner. This solution also offers an easy to 'Try it Now' experience that can be tried with customized data to realize the value offered by the solution. The 'Deploy' experience allows to quickly get started with the solution on Azure by deploying the end to end solution components into your Azure subscription and providing full control for customization as needed.

Anomaly Detection in Real-Time Data Streams

The Cortana Intelligence IT Anomaly Insights solution helps IT departments within large organisations to quickly detect and fix issues based on underlying health metrics from IT infrastructure (CPU, Memory, etc.), services (Timeouts, SLA variations, Brownouts, etc.), and other key performance indicators (KPIs) (Order backlog, Login and Payment failures, etc.) in an automated and scalable manner. This solution also offers an easy “Try it Now” experience that can be tried with customised data to realise the value offered by the solution. The “Deploy” experience allows you to quickly get started with the solution on Azure by deploying the end-to-end solution components into your Azure subscription and providing full control for customisation as needed.