Navigation überspringen

US Producer Price Index - Industry

labor statistics ppi industry

Der Erzeugerpreisindex (EPI) ist ein Maß für die durchschnittliche zeitliche Veränderung der Verkaufspreise, die inländische Erzeuger für ihre Leistungen erzielen. Die im EPI enthaltenen Preise stammen aus der ersten kommerziellen Transaktion für die erfassten Produkte und Dienstleistungen.

Die aktuellen Reihenindexe der Überarbeitung des Erzeugerpreisindexes spiegeln die Preisbewegungen für die Nettoleistung der Erzeuger wider, die nach dem North American Industry Classification System (NAICS) organisiert sind. Das PC-Dataset ist mit einer breiten Palette von NAICS-basierten wirtschaftlichen Zeitreihen kompatibel, einschließlich Produktivität, Produktion, Beschäftigung, Löhne und Gehälter.

Der EPI-Bereich umfasst die Leistung aller Branchen in den warenproduzierenden Sektoren der US-Wirtschaft (Bergbau, Produktion, Landwirtschaft, Fischerei und Forstwirtschaft) sowie Erdgas, Elektrizität, Baugewerbe und Güter, die mit denen der produzierenden Industrie konkurrieren, wie Abfälle und Ausschussmaterialien. Darüber hinaus umfasste das EPI-Programm ab Januar 2011 mehr als drei Viertel der Leistung des Dienstleistungssektors und veröffentlichte Daten für ausgewählte Branchen in den folgenden Sektoren: Groß- und Einzelhandel; Transport und Lagerung; Informationsbereich; Finanzen und Versicherungen; Immobilienvermittlung, -vermietung und -Leasing; professionelle, wissenschaftliche und technische Dienstleistungen; Verwaltungs-, Unterstützungs- und Entsorgungsdienstleistungen; Gesundheitswesen und Sozialhilfe sowie Beherbergung.

README mit detaillierten Informationen zu diesem Dataset finden Sie am Speicherort des ursprünglichen Datasets. Es sind zusätzliche Informationen in den FAQs verfügbar.

Dieses Dataset wird aus den vom US Bureau of Labor Statistics (BLS) veröffentlichten Daten der Erzeugerpreisindizes erzeugt. Lesen Sie die Informationen zu Verknüpfungen und Copyright und wichtige Hinweise zur Website, um mehr über die Bestimmungen für die Nutzung dieses Datasets zu erfahren.

Speicherort

Dieses Dataset wird in der Azure-Region „USA, Osten“ gespeichert. Aus Gründen der Affinität wird die Zuweisung von Computeressourcen in der Region „USA, Osten“ empfohlen.

Zugehörige Datasets

Benachrichtigungen

MICROSOFT STELLT DATASETS DER PLATTFORM AZURE OPEN DATASETS AUF EINER „AS IS“-BASIS (D. H. OHNE MÄNGELGEWÄHR) ZUR VERFÜGUNG. MICROSOFT ÜBERNIMMT WEDER AUSDRÜCKLICH NOCH STILLSCHWEIGEND DIE GEWÄHRLEISTUNG FÜR IHRE NUTZUNG DER DATENSÄTZE UND SICHERT KEINERLEI GARANTIEN ODER BEDINGUNGEN ZU. SOWEIT NACH ÖRTLICH ANWENDBAREM RECHT ZULÄSSIG, LEHNT MICROSOFT JEGLICHE HAFTUNG FÜR SCHÄDEN ODER VERLUSTE AB. DIES SCHLIEßT DIREKTE, INDIREKTE, BESONDERE ODER ZUFÄLLIGE SCHÄDEN ODER VERLUSTE SOWIE FOLGE- UND STRAFSCHÄDEN UND DAMIT VERBUNDENE VERLUSTE EIN.

Für die Bereitstellung dieses Datasets gelten die ursprünglichen Nutzungsbedingungen, unter denen Microsoft die Quelldaten bezogen hat. Das Dataset kann Daten von Microsoft enthalten.

Access

Available inWhen to use
Azure Notebooks

Quickly explore the dataset with Jupyter notebooks hosted on Azure or your local machine.

Azure Databricks

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Azure Synapse

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Preview

product_code industry_code series_id year period value footnote_codes seasonal series_title industry_name product_name
2123240 212324 PCU2123242123240 1998 M01 117 nan U PPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjusted Kaolin and ball clay mining Kaolin and ball clay
2123240 212324 PCU2123242123240 1998 M02 116.9 nan U PPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjusted Kaolin and ball clay mining Kaolin and ball clay
2123240 212324 PCU2123242123240 1998 M03 116.3 nan U PPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjusted Kaolin and ball clay mining Kaolin and ball clay
2123240 212324 PCU2123242123240 1998 M04 116 nan U PPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjusted Kaolin and ball clay mining Kaolin and ball clay
2123240 212324 PCU2123242123240 1998 M05 116.2 nan U PPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjusted Kaolin and ball clay mining Kaolin and ball clay
2123240 212324 PCU2123242123240 1998 M06 116.3 nan U PPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjusted Kaolin and ball clay mining Kaolin and ball clay
2123240 212324 PCU2123242123240 1998 M07 116.6 nan U PPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjusted Kaolin and ball clay mining Kaolin and ball clay
2123240 212324 PCU2123242123240 1998 M08 116.3 nan U PPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjusted Kaolin and ball clay mining Kaolin and ball clay
2123240 212324 PCU2123242123240 1998 M09 116.2 nan U PPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjusted Kaolin and ball clay mining Kaolin and ball clay
2123240 212324 PCU2123242123240 1998 M10 115.9 nan U PPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjusted Kaolin and ball clay mining Kaolin and ball clay
Name Data type Unique Values (sample) Description
footnote_codes string 3 nan
P

Bezeichnet Fußnoten für die Datenreihe. Die meisten Werte sind NULL. Siehe https://download.bls.gov/pub/time.series/pc/pc.footnote.

industry_code string 1,064 221122
325412

NAICS-Code für Industrie. Die Codes und Namen finden Sie unter https://download.bls.gov/pub/time.series/pc/pc.industry.

industry_name string 842 Electric power distribution
Pharmaceutical preparation manufacturing

Name, der dem Code für die Industrie entspricht. Die Codes und Namen finden Sie unter https://download.bls.gov/pub/time.series/pc/pc.industry.

period string 13 M06
M07

Identifiziert den Zeitraum, über den Daten beobachtet werden. Eine vollständige Liste finden Sie unter https://download.bls.gov/pub/time.series/pc/pc.period.

product_code string 4,822 335129
311514P

Code, der das Produkt identifiziert, auf das sich die Datenbeobachtung bezieht. Weitere Informationen zum Mapping von Industriecodes, Produktcodes und Produktnamen finden Sie unter https://download.bls.gov/pub/time.series/pc/pc.product.

product_name string 3,313 Primary products
Secondary products

Name des Produkts, auf das sich die erfassten Daten beziehen. Weitere Informationen zum Mapping von Industriecodes, Produktcodes und Produktnamen finden Sie unter https://download.bls.gov/pub/time.series/pc/pc.product.

seasonal string 1 U

Code, der angibt, ob die Daten saisonabhängig angepasst sind. S=Seasonally Adjusted (saisonabhängig angepasst); U=Unadjusted (nicht angepasst)

series_id string 4,822 PCU22121022121012
PCU221122221122439

Code, der die spezifische Reihen angibt. Eine Zeitreihe umfasst Daten, die über einen längeren Zeitraum in konsistenten Zeitintervallen erfasst werden. Informationen zu Reihen wie Code, Name, Start- und Endjahr usw. finden Sie unter https://download.bls.gov/pub/time.series/pc/pc.series.

series_title string 4,588 PPI industry data for Electric power distribution-East North Central, not seasonally adjusted
PPI industry data for Electric power distribution-Pacific, not seasonally adjusted
value float 7,658 100.0
100.4000015258789

Preisindex für Artikel.

year int 22 2015
2017

Jahr, in dem die Überwachung stattgefunden hat.

Select your preferred service:

Azure Notebooks

Azure Databricks

Azure Synapse

Azure Notebooks

Package: Language: Python Python
In [1]:
# This is a package in preview.
from azureml.opendatasets import UsLaborPPIIndustry

labor = UsLaborPPIIndustry()
labor_df = labor.to_pandas_dataframe()
ActivityStarted, to_pandas_dataframe
ActivityStarted, to_pandas_dataframe_in_worker
Looking for parquet files...
Reading them into Pandas dataframe...
Reading ppi_industry/part-00000-tid-1761562550540733469-da319923-1af6-4884-a5f4-16397508d15f-4596-1-c000.snappy.parquet under container laborstatisticscontainer
Done.
ActivityCompleted: Activity=to_pandas_dataframe_in_worker, HowEnded=Success, Duration=7978.44 [ms]
ActivityCompleted: Activity=to_pandas_dataframe, HowEnded=Success, Duration=8014.64 [ms]
In [2]:
labor_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 948634 entries, 0 to 948633
Data columns (total 11 columns):
product_code      948634 non-null object
industry_code     948634 non-null object
series_id         948634 non-null object
year              948634 non-null int32
period            948634 non-null object
value             948634 non-null float32
footnote_codes    948634 non-null object
seasonal          948634 non-null object
series_title      948634 non-null object
industry_name     948634 non-null object
product_name      948634 non-null object
dtypes: float32(1), int32(1), object(9)
memory usage: 72.4+ MB
In [1]:
# Pip install packages
import os, sys

!{sys.executable} -m pip install azure-storage-blob
!{sys.executable} -m pip install pyarrow
!{sys.executable} -m pip install pandas
In [2]:
# Azure storage access info
azure_storage_account_name = "azureopendatastorage"
azure_storage_sas_token = r""
container_name = "laborstatisticscontainer"
folder_name = "ppi_industry/"
In [3]:
from azure.storage.blob import BlockBlobServicefrom azure.storage.blob import BlobServiceClient, BlobClient, ContainerClient

if azure_storage_account_name is None or azure_storage_sas_token is None:
    raise Exception(
        "Provide your specific name and key for your Azure Storage account--see the Prerequisites section earlier.")

print('Looking for the first parquet under the folder ' +
      folder_name + ' in container "' + container_name + '"...')
container_url = f"https://{azure_storage_account_name}.blob.core.windows.net/"
blob_service_client = BlobServiceClient(
    container_url, azure_storage_sas_token if azure_storage_sas_token else None)

container_client = blob_service_client.get_container_client(container_name)
blobs = container_client.list_blobs(folder_name)
sorted_blobs = sorted(list(blobs), key=lambda e: e.name, reverse=True)
targetBlobName = ''
for blob in sorted_blobs:
    if blob.name.startswith(folder_name) and blob.name.endswith('.parquet'):
        targetBlobName = blob.name
        break

print('Target blob to download: ' + targetBlobName)
_, filename = os.path.split(targetBlobName)
blob_client = container_client.get_blob_client(targetBlobName)
with open(filename, 'wb') as local_file:
    blob_client.download_blob().download_to_stream(local_file)
In [4]:
# Read the parquet file into Pandas data frame
import pandas as pd

print('Reading the parquet file into Pandas data frame')
df = pd.read_parquet(filename)
In [5]:
# you can add your filter at below
print('Loaded as a Pandas data frame: ')
df
In [6]:
 

Azure Databricks

Package: Language: Python Python
In [1]:
# This is a package in preview.
from azureml.opendatasets import UsLaborPPIIndustry

labor = UsLaborPPIIndustry()
labor_df = labor.to_spark_dataframe()
ActivityStarted, to_spark_dataframe ActivityStarted, to_spark_dataframe_in_worker ActivityCompleted: Activity=to_spark_dataframe_in_worker, HowEnded=Success, Duration=2665.84 [ms] ActivityCompleted: Activity=to_spark_dataframe, HowEnded=Success, Duration=2668.22 [ms]
In [2]:
display(labor_df.limit(5))
product_codeindustry_codeseries_idyearperiodvaluefootnote_codesseasonalseries_titleindustry_nameproduct_name
2123240212324PCU2123242123240 1998M01117.0nanUPPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjustedKaolin and ball clay miningKaolin and ball clay
2123240212324PCU2123242123240 1998M02116.9nanUPPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjustedKaolin and ball clay miningKaolin and ball clay
2123240212324PCU2123242123240 1998M03116.3nanUPPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjustedKaolin and ball clay miningKaolin and ball clay
2123240212324PCU2123242123240 1998M04116.0nanUPPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjustedKaolin and ball clay miningKaolin and ball clay
2123240212324PCU2123242123240 1998M05116.2nanUPPI industry data for Kaolin and ball clay mining-Kaolin and ball clay, not seasonally adjustedKaolin and ball clay miningKaolin and ball clay
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "laborstatisticscontainer"
blob_relative_path = "ppi_industry/"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))

Azure Synapse

Package: Language: Python
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "laborstatisticscontainer"
blob_relative_path = "ppi_industry/"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))