Přeskočit navigaci

Predikce odepisování půjček s využitím SQL Serveru

Toto řešení ukazuje, jak sestavit a nasadit model strojového učení s využitím SQL Serveru 2016 a R Services pro predikci, jestli bude bankovní půjčku nutné v následujících 3 měsících odepsat jako nedobytnou pohledávku.

Predikce odepisování půjček s využitím SQL ServeruToto řešení ukazuje, jak sestavit a nasadit model strojového učení s využitím SQL Serveru 2016 a R Services pro predikci, jestli bude bankovní půjčku nutné v následujících 3 měsících odepsat jako nedobytnou pohledávku.

Právní omezení

© 2017 Microsoft Corporation. Všechna práva vyhrazena. Tyto informace se poskytují „tak, jak jsou“ a mohou se bez předchozího upozornění změnit. Společnost Microsoft neposkytuje s ohledem na uvedené informace žádné záruky, ať už výslovné, nebo implikované. K vytvoření řešení byla použita data třetích stran. Zodpovídáte za respektování práv ostatních, včetně pořízení náležitých licencí pro vytváření podobných datových sad a jejich dodržování.

Predikce odepisování půjček s využitím SQL ServeruToto řešení ukazuje, jak sestavit a nasadit model strojového učení s využitím SQL Serveru 2016 a R Services pro predikci, jestli bude bankovní půjčku nutné v následujících 3 měsících odepsat jako nedobytnou pohledávku.

Související architektury řešení

Loan Credit Risk with SQL ServerUsing SQL Server 2016 with R Services, a lending institution can make use of predictive analytics to reduce number of loans they offer to those borrowers most likely to default, increasing the profitability of their loan portfolio.

Úvěrové riziko u půjček s využitím SQL Serveru

Pomocí SQL Serveru 2016 s R Services může poskytovatel půjček využít prediktivní analýzu k omezení počtu půjček, které nabízí vypůjčovatelům s nejvyšší pravděpodobností neplacení, a zvýšení ziskovosti úvěrového portfolia.