Přeskočit navigaci

US Population by ZIP Code

US Census Population Decennial Zip ZCTA5

Informace o obyvatelstvu USA pro jednotlivá PSČ podle pohlaví a rasy vyplývající z desetiletého sčítání lidu z roku 2010.

Zdrojem této datové sady jsou rozhraní API pro datové sady desetiletého sčítání lidu od statistického úřadu USA. Podmínky a ujednání související s používáním této datové sady najdete v podmínkách služby a v zásadách a upozorněních.

Objem a uchovávání

Tato datová sada se uchovává ve formátu Parquet a obsahuje data z roku 2010.

Umístění úložiště

Tato datová sada se uchovává v oblasti Azure Východní USA. Kvůli přidružení se doporučuje přidělovat výpočetní prostředky v oblasti Východní USA.

Související datové sady

Sdělení

MICROSOFT POSKYTUJE SLUŽBU AZURE OPEN DATASETS TAK, JAK JE. MICROSOFT V SOUVISLOSTI S VAŠÍM POUŽÍVÁNÍM DATOVÝCH SAD NEPOSKYTUJE ŽÁDNÉ ZÁRUKY, AŤ UŽ VÝSLOVNÉ NEBO PŘEDPOKLÁDANÉ, ANI JEJ NIJAK NEPODMIŇUJE. V ROZSAHU POVOLENÉM MÍSTNÍM ZÁKONEM MICROSOFT ODMÍTÁ JAKOUKOLI ODPOVĚDNOST ZA ŠKODY A ZTRÁTY ZPŮSOBENÉ VAŠÍM POUŽÍVÁNÍM DATOVÝCH SAD, VČETNĚ PŘÍMÝCH, NÁSLEDNÝCH, ZVLÁŠTNÍCH, NEPŘÍMÝCH, NÁHODNÝCH NEBO TRESTNÍCH ŠKOD.

Na tuto datovou sadu se vztahují původní podmínky, které Microsoft přijal se zdrojovými daty. Datová sada může obsahovat data pocházející z Microsoftu.

Access

Available inWhen to use
Azure Notebooks

Quickly explore the dataset with Jupyter notebooks hosted on Azure or your local machine.

Azure Databricks

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Azure Synapse

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Preview

decennialTime zipCode population race sex minAge maxAge year
2010 77477 265 WHITE ALONE Female 15 17 2010
2010 77477 107 SOME OTHER RACE ALONE Female 15 17 2010
2010 77477 12 SOME OTHER RACE ALONE Female 65 66 2010
2010 77477 101 ASIAN ALONE Female 60 61 2010
2010 77477 221 ASIAN ALONE Male 10 14 2010
2010 77478 256 WHITE ALONE Female 15 17 2010
2010 77478 17 SOME OTHER RACE ALONE Female 15 17 2010
2010 77478 3 SOME OTHER RACE ALONE Female 65 66 2010
2010 77478 129 ASIAN ALONE Female 60 61 2010
2010 77478 296 ASIAN ALONE Male 10 14 2010
Name Data type Unique Values (sample) Description
decennialTime string 1 2010

Rok, ve kterém proběhlo desetileté sčítání lidu, např. 2010 nebo 2000

maxAge int 23 21
69

Maximum věkového rozmezí. Pokud je hodnota null, platí pro všechny věkové kategorie nebo věkové rozmezí nemá horní hranici a věk je například vyšší než 85.

minAge int 23 15
22

Minimum věkového rozmezí. Pokud je hodnota null, platí pro všechny věkové kategorie.

population int 29,274 1
2

Stav obyvatelstva v tomto segmentu

race string 8 ASIAN ALONE
NATIVE HAWAIIAN AND OTHER PACIFIC ISLANDER ALONE

Kategorie rasy v údajích ze sčítání lidu. Pokud je hodnota null, platí pro všechny rasy.

sex string 3 Male
Female

Muž nebo žena. Pokud je hodnota null, platí pro obě pohlaví.

year int 1 2010

Rok (vyjádřený celým číslem), ve kterém proběhlo desetileté sčítání lidu

zipCode string 33,120 62996
39339

5místný kód ZCTA5 (ZIP Code Tabulation Area)

Select your preferred service:

Azure Notebooks

Azure Databricks

Azure Synapse

Azure Notebooks

Package: Language: Python Python
In [1]:
# This is a package in preview.
from azureml.opendatasets import UsPopulationZip

population = UsPopulationZip()
population_df = population.to_pandas_dataframe()
ActivityStarted, to_pandas_dataframe
ActivityStarted, to_pandas_dataframe_in_worker
Looking for parquet files...
Reading them into Pandas dataframe...
Reading release/us_population_zip/year=2010/part-00178-tid-5434563040420806442-84b5e4ab-8ab1-4e28-beb1-81caf32ca312-1919656.c000.snappy.parquet under container censusdatacontainer
Done.
ActivityCompleted: Activity=to_pandas_dataframe_in_worker, HowEnded=Success, Duration=34526.07 [ms]
ActivityCompleted: Activity=to_pandas_dataframe, HowEnded=Success, Duration=34538.26 [ms]
In [2]:
population_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 19077120 entries, 0 to 19077119
Data columns (total 7 columns):
decennialTime    object
zipCode          object
population       int32
race             object
sex              object
minAge           float64
maxAge           float64
dtypes: float64(2), int32(1), object(4)
memory usage: 946.1+ MB
In [1]:
# Pip install packages
import os, sys

!{sys.executable} -m pip install azure-storage-blob
!{sys.executable} -m pip install pyarrow
!{sys.executable} -m pip install pandas
In [2]:
# Azure storage access info
azure_storage_account_name = "azureopendatastorage"
azure_storage_sas_token = r""
container_name = "censusdatacontainer"
folder_name = "release/us_population_zip/"
In [3]:
from azure.storage.blob import BlockBlobServicefrom azure.storage.blob import BlobServiceClient, BlobClient, ContainerClient

if azure_storage_account_name is None or azure_storage_sas_token is None:
    raise Exception(
        "Provide your specific name and key for your Azure Storage account--see the Prerequisites section earlier.")

print('Looking for the first parquet under the folder ' +
      folder_name + ' in container "' + container_name + '"...')
container_url = f"https://{azure_storage_account_name}.blob.core.windows.net/"
blob_service_client = BlobServiceClient(
    container_url, azure_storage_sas_token if azure_storage_sas_token else None)

container_client = blob_service_client.get_container_client(container_name)
blobs = container_client.list_blobs(folder_name)
sorted_blobs = sorted(list(blobs), key=lambda e: e.name, reverse=True)
targetBlobName = ''
for blob in sorted_blobs:
    if blob.name.startswith(folder_name) and blob.name.endswith('.parquet'):
        targetBlobName = blob.name
        break

print('Target blob to download: ' + targetBlobName)
_, filename = os.path.split(targetBlobName)
blob_client = container_client.get_blob_client(targetBlobName)
with open(filename, 'wb') as local_file:
    blob_client.download_blob().download_to_stream(local_file)
In [4]:
# Read the parquet file into Pandas data frame
import pandas as pd

print('Reading the parquet file into Pandas data frame')
df = pd.read_parquet(filename)
In [5]:
# you can add your filter at below
print('Loaded as a Pandas data frame: ')
df
In [6]:
 

Azure Databricks

Package: Language: Python Python
In [1]:
# This is a package in preview.
from azureml.opendatasets import UsPopulationZip

population = UsPopulationZip()
population_df = population.to_spark_dataframe()
ActivityStarted, to_spark_dataframe ActivityStarted, to_spark_dataframe_in_worker ActivityCompleted: Activity=to_spark_dataframe_in_worker, HowEnded=Success, Duration=4108.82 [ms] ActivityCompleted: Activity=to_spark_dataframe, HowEnded=Success, Duration=4111.16 [ms]
In [2]:
display(population_df.limit(5))
decennialTimezipCodepopulationracesexminAgemaxAgeyear
201077477265WHITE ALONEFemale15172010
201077477107SOME OTHER RACE ALONEFemale15172010
20107747712SOME OTHER RACE ALONEFemale65662010
201077477101ASIAN ALONEFemale60612010
201077477221ASIAN ALONEMale10142010
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "censusdatacontainer"
blob_relative_path = "release/us_population_zip/"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))

Azure Synapse

Package: Language: Python Python
In [41]:
# This is a package in preview.
from azureml.opendatasets import UsPopulationZip

population = UsPopulationZip()
population_df = population.to_spark_dataframe()
In [42]:
# Display top 5 rows
display(population_df.limit(5))
Out[42]:
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "censusdatacontainer"
blob_relative_path = "release/us_population_zip/"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))